Topic outline

  • About the Cours and the Author

    University: Djilali Bounaama Khemis Miliana

    Faculty: Science of Matter and Computer Science

    Department: physics

    Speciality: theoretical physics

    Level: Master 1

    Module: Quantum Field Theory I

    Semester:1

    Credit: 06

    Unit: Fundamental.

    Coefficient: 3. 

    Timetable: 1h30 min, 3 sessions per week (2 lectures and 1 TD)

    Teacher responsible for the course: Dr. FERMOUS Rachid.

    Grade: MCA 

     Assessment method: 

    The final assessment is carried out through:

    • Assessment of tutorials: which represents 50% (12 points for presentations, 5 points for attendance and 3 points for participation). 
    • A table-top final exam: which accounts for 50% of the final mark, and which covers everything you have seen in this course during the semester.
      To pass.
    • To pass the module, you must have an overall average of at least 10 out of 20.

       

     
    •  
  • Objectifs of the course

    • Understand the concept of canonical quantization for scalar fields, vector fields, and fermion fields.
    • Understand the concept of global and local symmetry in quantum field theory and their implications.

  • Recommended prior knowledge

    Quantum mechanics, analytical mechanics, electromagnetism, special relativity

  • Course-Program

    1    Preface 3
    2    A review of quantum mechanics 4
    2.1    Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     4
    2.2    Wave modeling   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       4
    2.3    Schrödinger equation .  .  .  .  .  .  .  .  .  .  .     5
    2.4    Harmonic oscillator    .  .  .  .  .  .  .  .  .  .  .  .  .  . 6
    2.5    Pauli equation     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6
    3    Exercises 7
    4    A review of special relativity 8
    4.1     Overview of the laws of electromagnetism  .  .  .  .  8
    4.1.1     Maxwell equations  .  .  .  .  .  .  .  .  .  8
    4.1.2     Vector and scalar potentials  .  .  .  .  .  .  .10
    4.2    Vector analysis in Minkowski space   .  .  .  11
    4.2.1     Quadri-divergence and quadri-gradient    .  .  11
    4.2.2     Quad-vector current density   .  .  .  .  .12
    4.2.3     Quad-vector potential   .  .  .  .13
    4.2.4     Electromagnetic
    eld tensor    .  .  .  .  .13
    4.2.5     Change of variable  .  .  .  .  .  .15
    5    Exercises

    6    Symmetry and invariance 19
    6.1    De
    nition    .  .  .  .  .  .19
    6.2    Types of transformations .  .  . 19
    6.2.1     Geometric transformations   .  .  .  .  19
    6.2.2     Internal transformations    .  .  .  . 20
    6.2.3     Internal geometric transformations    .  .  .20
    7    Exercises

    8    Klein-Gordon equation 22
    8.1    Introduction  .  .  .  .  .  .  .  .  .  .  . 22
    8.2    Quadri-vectors in
    eld theory.    .  .  .  23
    8.3    Free Klein-Gordon equation  .  .  .  .  .24
    8.4    Invariance of the free Klein-Gordon equation under gauge transformation    .  .  . 26
    8.5    Solutions to the free Klein-Gordon equation   .  . 26
    8.6    Physical interpretation of solutions to the free Klein-Gordon equation  .  .  .  .  . 28
    9    Klein-Gordon equation in the presence of an external electromagnetic
    eld 30
    9.1    invariance of the Klein-Gordon equation under the presence of an external electromagnetic
    eld through gauge transformation    .  .  .  .31
    9.2    Klein-Gordon equation current in the presence of an external electromagnetic
    eld      31
    10  Exercises  33
    11  Somme References 35

  • First-Chapter

  • Second-Chapter

  • Third-Chapter

  • Fourth-Chapter

  • Fifth-Chapter

  • References

    1.    J.  P.  Derendinger,  Théorie  quantique  des  champs,  Presses  polytechnique  et  universitaires  
    romandes, 2001
    2.  S. Weinberg, Quantum theory of fields, 3 vols, Cambridge University Press, 1995,1996
    3.  J. J. Sakurai, Advanced quantum rnechanics, Addison-Wesley, 1967
    4.  J. D. Bjorken and S.D. Drell, Relativistic quantum fields, McGraw-Hill, 1965
    5.  F. Mandl et G.Shaw., Quantum field theory, Addison-Wesley, 1993
    6.  N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized Fields (Interscience
    Monographs in Physics and Astronomy), John Wiley & Sons, 1959
    7.  R. Balian, du microscopique au macroscopique, vol. 2. École polytechnique, ellipses, 1982