Symmetry and invariance

6.1 Definition

A physical law is said to be invariant when it remains unchanged by a change of coordinates and variables.

Example:

In classical mechanics:

- The coordinates are represented by: \overrightarrow{r} , t, \cdots .
- The variables are represented by: $\overrightarrow{r}(t)$, $\overrightarrow{p}(t)$,

In quantum mechanics:

- The coordinates are represented by: (\overrightarrow{r},t) ,
- The variables are represented by: $\psi\left(\overrightarrow{r},t\right)$, $\psi\left(t\right)$, \cdots .

In analytical mechanics:

- The coordinates are represented by: q(t), $p(t) \cdots$.
- The variables are represented by: $\dot{q}\left(t\right)=-\frac{\partial H}{\partial p_{i}},\,\dot{p}\left(t\right)=-\frac{\partial H}{\partial q_{i}},\,\cdots$

6.2 Types of transformations

There are two kinds of transformation:

6.2.1 Geometric transformations

The geometric transformations that exist are:

- Moving in space.
- Moving in time.
- Rotation.
- Time reversal *T*.
- Inversion of the origin *P*.

6.2.2 Internal transformations

A particle can undergo the following internal transformations:

- Interchanging identical particles.
- Interchanging particles and anti-particles. This transformation is often called "charge conjugation", which is denoted *C*.

Remark:

The three transformations *C*, *P*, *T* are discrete transformations.

6.2.3 Internal geometric transformations

For this type of transformation, we can cite the Galilean transformation, given by

$$\begin{cases}
\overrightarrow{r} \to \overrightarrow{r'} = \overrightarrow{r} + \overrightarrow{v}t \\
t \to t' = t
\end{cases}$$
(6.1)