Exercises

Exercice 3:

The electric and magnetic fields $\overrightarrow{E_1}$ and $\overrightarrow{B_1}$, measured by an observer \mathbf{O} linked to a Galilean reference frame \mathbf{R} , are given in terms of the scalar and vector potentials ϕ_1 , $\overrightarrow{A_1}$ by the equations

$$\overrightarrow{E_1} = -\overrightarrow{\mathbf{grad}} \phi_1 - \frac{\partial \overrightarrow{A_1}}{\partial t}, \quad \overrightarrow{B_1} = \overrightarrow{\mathbf{rot}} \overrightarrow{A_1}$$

- 1. Give the expression for the components of the fields $\overrightarrow{E_1}$ and $\overrightarrow{B_1}$ in the reference frame **R**.
- 2. Find the components of the electromagnetic tensor.
- 3. What are the new values of the fields $\overrightarrow{E_1}'$ and $\overrightarrow{B_1}'$, measured by an observer \mathbf{O}' linked to a Galilean reference frame \mathbf{R}' moving at a constant speed $\overrightarrow{\mathbf{v}}$ relative to \mathbf{R} ?

Exercice 4:

– Find the probability current of the Schrodinger equation \overrightarrow{j} which verifies the equation

$$\frac{\partial \rho}{\partial t} + \overrightarrow{\nabla} \overrightarrow{j} = 0$$

We give : $\rho = \psi^*(\vec{r}, t)\psi(\vec{r}, t)$