Exercises

Exercice 5:

In the position space $\{|\overrightarrow{r}\rangle\}$, the geometric transformation origin inversion is defined as:

$$\Pi |\overrightarrow{r}\rangle = |-\overrightarrow{r}\rangle$$
,

 Π represents the parity operator.

- 1. Calculate $\Pi | \overrightarrow{p} \rangle$
- 2. Calculate $\Pi |\psi(t)\rangle$
- 3. The transformed \overrightarrow{A}' of an operator \overrightarrow{A} is defined by $\overrightarrow{A}' \equiv \Pi \overrightarrow{A} \Pi^{-1}$. Calculate the transforms of the position, momentum, and angular momentum operators given respectively by $\overrightarrow{R}' \equiv \Pi \overrightarrow{R} \Pi^{-1}$, $\overrightarrow{P}' \equiv \Pi \overrightarrow{P} \Pi^{-1}$ and $\overrightarrow{L}' \equiv \Pi \overrightarrow{L} \Pi^{-1}$