Klein-Gordon equation

8.1 Introduction

The construction of quantum mechanics, which considers time as decoupled from space variables,
is not compatible with the principles of special relativity. Additionally, experimental observations
show that quantum mechanics is only accurate when the observed phenomena involve particles
at low speeds. For example, it is not a suitable model for describing experiments involving
interaction between light and matter.
In this chapter, we introduce the initial efforts to modify quantum mechanics to incorporate
relativistic principles. Our first objective will be to derive a relativistic equation. In other words,
we will begin our exploration with a particle that possesses zero spin. Within this context, it is
logical to operate within the framework of Minkowski space, which is fundamental to special
relativity, in order to develop a relativistic theory.
In order to describe quantum particles with zero spin and relativistic speeds, the Klein-Gordon
equation is introduced. This equation is the relativistic equivalent of the Schrodinger equation
given by,

Hy =Ey (8.1)

By applying the principle of equivalence, we can write

? 72 172

zhat P va P, % zh? (8.2)

It is known that in the case of plane waves, the functions gb(7>, t) which are solutions of the
Schrodinger equation are given by.

9(7, 1) = T (8.3)

Let’s attempt to find the general form of the Klein-Gordon equation, which allows us to describe
the motion of free particles with zero spin and relativistic velocities, starting from the Schrodinger
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equation.

8.2 Quadri-vectors in field theory.
It is important to remember that the relativistic energy of a free particle is determined by

E= /722 + m2c* (8.4)

- 7 : impulsion
- ¢ : velocity of light

— m : mass of the particle

The energy-momentum quadri-vector ? is defined by.
E
F- (7, ;) (5.5)

%
In field theory, the Einstein convention is used. If A is a quadri-vector, it is denoted as A, with
u=1,2,3,4. The quadri-vector A, has the following components:

Ay = (8.6)

When calculating the dot product of two quadri-vectors Ay and B,, the result is obtained

aq b1
a b
Ava = 2 . 2 = 4a1by 4 axby + azby — asby (8.7)
as b3
ia4 lb4

The scalar product satisfies the metric of Minkowski space (4, +, +, —).

In the field theory, the energy-momentum quadri-vector is written as:

P, = (?,if) (8.8)
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It should be emphasized that in quantum mechanics, E and ? are defined as:

E— ih% T —inV (8.9)

By substituting (8.9) into (8.8), we obtain

p, = (—iﬁ),ﬂi)

c ot

_if (?—é%) (8.10)

If we set,
io
9, = (?,—CaJ 8.11)

The quadri-vector spatio-temporal derivative is represented by d,, where we find

P, = —ihd, (8.12)

8.3 Free Klein-Gordon equation

Let’s now find the equation of the free Klein-Gordon describing the motion (displacement) of a
quantum particle, with zero spin and relativistic speed
In quantum mechanics, a free particle is described by the Schrodinger’s evolution equation.

0 1
ihg ¢(7,t)=Ep(7,t) ot E=H=E.+V =FE +0= Emv2 avec v <<c (8.13)

For a free relativistic particle

Er =4/ 72C2 + m2ct (8.14)

The dynamics of these relativistic particles will be described by the following equation

BT ) = 97,0 = [T ket (70 (8.15)

2 2
(ih%) (7, t) = (\/?202+m2c4> o(7,t) (8.16)

L O(7 1) = (?2(:2 + m2c4) o(7 1) (8.17)
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—hzgjt (7, t) = ((—ih?)zc%rmzc“) o(7,1) (8.18)
—hzg—; (7, 1) = ((—ih?)z 2+ m2c4) (7,1 (8.19)
;2_725_; o(7 1) + % o(7,t) — ’;:22;4 ¢(7,1) =0 (8.20)
By setting ?2 = A, we obtain the following equation
(a- 1o %) P(71) = 0 (8.21)

The final equation represents the free Klein-Gordon equation written in real space. Let us now
seek the form of this equation in Minkowski space.

We have 5 - 3
— _te 2 _ 5 .9 — _tey. _te
9, = <€>, cat> — R =0,-0, (?, cat) (?, cat) (8.22)

1 02 1 92
2 T = A
9, = (A, 2 82t> A= o (8.23)
By replacing (8.23) in (8.21), we get
2.2
(af, - mhzc ) $(7,t) =0 (8.24)

By setting i = ¢ = 1 and defining (7, t) = x,, where x, denotes a point in Minkowski space and
u=1,2,3,4, the equation (8.24) is transformed

(aﬁ - m2) ¢(x,) =0 (8.25)

This equation represents the free Klein-Gordon equation expressed in Minkowski space.
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8.4 Invariance of the free Klein-Gordon equation under gauge

transformation

Exercice 6 :

The motion of a particle with mass m, zero spin, and relativistic speed c is governed by the

following free Klein-Gordon equation

2 2
- Demonstrate the invariance of this equation under the following gauge transformation

¢(xu) — ¢)/(xy) = e’iW(xi’)gb(xﬂ) , ¢(xu),a(x,) sont deux réels arbitraires.

8.5 Solutions to the free Klein-Gordon equation
The free for Klein-Gordon equation is given by

(8;21 — m2> ¢(xu) =0 qu'on peut écrire (A — S0 — ) (7 ,t) =0 (8.26)
This equation has a solution in steady states. Its general form is given by,

o7, 1) = f(t) (7)) (827)

It is said that a steady-state solution is a solution with separable variables. Substituting (8.27) into
(8.26), we find

1 aZ 2.2
(8= 2gm ") fO9(P)=0 (8.28)
1 02 m?c?

FOMPT) = 9(7) g5, () = =5 f(H$(T) =0 (8.29)



Dividing the entire equation by f(£)y(7) yields

FOMP(T) 1 = 19, 1 22 Sy
e swp) T ee O ey e SO =0
Ap(7) 119 m2c?

p(7) fea e =0

This equation represents a second-order equation with two independent variables.

- 2.2 2
Alp( ! ) me lf—() = constante, J

p(7) w0 wee S =g/ ()

2

If we define constant = w=, we can deduce

M(T) w1 f0)
p(7)  w @

From this equation, we derive the two following equations:

— 2.2 m?c? >

f

(t)
Equation (8.35) can be expressed in the following general form

!

£/(8) £ (cw)2f (1) = 0
Equation (8.35) then has solutions of the form
f(t) — Aecwt + Befcwt

In order to have continuous solutions everywhere, we set

cw = —, E estun réel.

LW L0 _a iy = catpin = £ () - () =0
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(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

(8.38)



By substituting (8.37) into (8.38), we obtain
f(t) = Ae'it + Be it

We have
iE s o E? ) E?

(W= — =W =—-7F—Ww =——

h B2

Let us now substitute into equation (8.34)
E2 2.2

Agl)(?) — ( 72 + mec

) () =0 —

By finding a common denominator, one can determine
EZ m2c4 _EZ + m2c4
AY(T) — <_W + W) P(7) =0= Ay(7) - (7) P(7) =0

Or,
F2 — 7%2 ot — _?zcz — _E2 4 g2

By substituting into the previous equation, we find

Mp(7) - (‘7262) P(7) =0 = Ap(7) - (‘72) P(7) =0 =

c2i?

This equation has solutions of the following form

zp(7>) = Cel?Tr —I—De*l?hr
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(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

8.6 Physical interpretation of solutions to the free Klein-Gordon

equation

In order to give a physical meaning to the solutions, we assume

iE

— ¢ n'! Represents a particle that was created in the past (—co) and is traveling towards the

future (+o0).
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iE
— en! Represents a particle created in the future (+o0) and travels towards the past (—co).

— A Represents the probability that the particle being created in the future (4o0) and traveling
towards the past (—o0).

— B Represents the probability that the particle was created in the past, extending from nega-
tive infinity (—oco0), and is now moving towards the future, represented by positive infinity
(+00).

Therefor, the physical solution is given by
f(t)=en! (8.47)

It signifies the probability that the particle was created in the past, extending from negative

infinity, and is now moving towards the future, represented by positive infinity

ipT [

(7, 1) = f(t) - p(F)=e 1! (Ce; +Dei7h_>> (8.48)

Exercice 7 :

The particles with spin 0, charge g, and mass m are approaching from (+o0) to (—o0) on a
potential barrier of height V and width 4. Given that the energy of these particles is given by
E =gV /2, where qV > 2mc?,

1. Calculate the transmission coefficients T and reflection coefficients R.

2. Calculate the current density J, in each region.

Indication: Working on one dimension.



