Exercises

Exercice 1:

At time t_o , the state of the one-dimensional linear harmonic oscillator system is described by $\phi(x,0)=e^{a^+}\psi_0(x)$; where $\psi_n(x)$ are the eigenfunctions of $H_o=\hbar\omega(a^+a+\frac{1}{2})$ corresponding to the eigenvalues $E_n=\hbar\omega(n+\frac{1}{2})$, where n is an integer.

- 1. What is the normalized wave function at time *t*?
- 2. What is the probability of finding the energy *E* at time *t*?

Exercice 2:

1. Using the product of Pauli matrices given by the formulae: $\sigma_i \sigma_j = \delta_{ij} + i \epsilon^{ijk} \sigma_k$, show that

$$(\overrightarrow{\sigma} \overrightarrow{A})(\overrightarrow{\sigma} \overrightarrow{B}) = \overrightarrow{A} \overrightarrow{B} + i \overrightarrow{\sigma} (\overrightarrow{A} \wedge \overrightarrow{B})$$

when \overrightarrow{A} and \overrightarrow{B} commute with $\overrightarrow{\sigma}$.

2. Find the general form of the free Pauli equation.