Course-Programm
Section outline
-
1 Lagrange formulation of quantum filed theory ....3
1.1 Recall the formalism of Lagrange . . . . . . . . . . .3
1.1.1 Principle of least action . . . . . . . . . . 3
1.1.2 Euler-Lagrange equations . . . . . 4
1.1.3 Lagrangian choice . . . . . . . . . . 5
1.1.4 Hamiltonian formulation . . . . . 6
1.2 Basic principle of quantum field theory . . . . . . . . 6
1.2.1 Free scalar field . . . . . . . . . . . 7
1.2.2 Free complex scalar field . . . . . 8
1.2.3 Complex scalar field in the presence of an external electromagnetic field . . 8
1.2.4 Remark . . .9
2 Exercises 10
3 Symmetries and conservation laws 11
3.1 Example of transformation . . . . . . . . . 11
3.1.1 Space-time transformation . . . . . 11
3.1.2 Global phase. . . . 12
3.1.3 Local phase transformation. . . . 12
3.2 Noether’s theorem . . . . . . . 12
3.2.1 Statement . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Demonstration . . . . 13
3.3 Energy-Momentum Tensor of the scalar field . . 18
4 Exercises 20
5 Dirac equation 21
5.1 Dirac’s Hamiltonian . . . . . . . . 21
5.2 The characteristics of Dirac matrices . . . . .22
5.3 Standard representation . . . . . . . . 25
5.4 Free Dirac equation . . . . . . . . . 26
5.5 Physical interpretation of the negatives energies . 28
5.6 Current of free Dirac equation . . . . . . . . . 29
5.6.1 vector current and total charge . . . . . . . . 31
5.7 Dirac equation in the presence of an external electromagnetic field . . . . . 31
5.8 Lagrangian of the complex spinor field . . . 32
5.9 Lagrangian of the complex spinor field in the presence of an external electromagnetic field. . . . . . 33
6 Exercises 35
7 Somme References 40