Course-Program
Section outline
-
1 Preface 3
2 A review of quantum mechanics 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . 4
2.2 Wave modeling . . . . . . . . . . . . . . . . . . 4
2.3 Schrödinger equation . . . . . . . . . . . 5
2.4 Harmonic oscillator . . . . . . . . . . . . . . 6
2.5 Pauli equation . . . . . . . . . . . . . . . . . 6
3 Exercises 7
4 A review of special relativity 8
4.1 Overview of the laws of electromagnetism . . . . 8
4.1.1 Maxwell equations . . . . . . . . . 8
4.1.2 Vector and scalar potentials . . . . . . .10
4.2 Vector analysis in Minkowski space . . . 11
4.2.1 Quadri-divergence and quadri-gradient . . 11
4.2.2 Quad-vector current density . . . . .12
4.2.3 Quad-vector potential . . . .13
4.2.4 Electromagnetic field tensor . . . . .13
4.2.5 Change of variable . . . . . .15
5 Exercises6 Symmetry and invariance 19
6.1 Definition . . . . . .19
6.2 Types of transformations . . . 19
6.2.1 Geometric transformations . . . . 19
6.2.2 Internal transformations . . . . 20
6.2.3 Internal geometric transformations . . .20
7 Exercises8 Klein-Gordon equation 22
8.1 Introduction . . . . . . . . . . . 22
8.2 Quadri-vectors in field theory. . . . 23
8.3 Free Klein-Gordon equation . . . . .24
8.4 Invariance of the free Klein-Gordon equation under gauge transformation . . . 26
8.5 Solutions to the free Klein-Gordon equation . . 26
8.6 Physical interpretation of solutions to the free Klein-Gordon equation . . . . . 28
9 Klein-Gordon equation in the presence of an external electromagnetic field 30
9.1 invariance of the Klein-Gordon equation under the presence of an external electromagnetic field through gauge transformation . . . .31
9.2 Klein-Gordon equation current in the presence of an external electromagnetic field 31
10 Exercises 33
11 Somme References 35