University of Khemis Miliana Faculty of Science and Technology Department of Physics Iniversity of Khemis Miliana Acadimic year: 2023/2024 Semester: 04 Level: L2 Physics # Tutorials. No. 2: Work, heat and internal energy #### **Exercise 01:** - 1. Define the work of a force and show that the product $P\Delta V$ has the dimension of work. - 2. Give the dimensions (units) in the International System (SI) of heat and absolute temperature T. Deduce the relationship between T and the temperature θ (°C). - 3. Give the expressions for the elementary heat in terms of the state variables (T, V), (T, P), and (P, V). - 4. Can heat be added to a system without changing its temperature? - 5. Can the temperature of a system be changed without adding heat to it? Justify your answer. ### Exercise 02: The initial state of a mole of ideal gas is characterized by : $P_0 = 2.10^5 Pa$, $V_0 = 14$ litres. The following reversible transformations are successively applied to this gas: An isobaric expansion that doubles its volume, transformation: $(0\rightarrow 1)$. An isothermal compression that brings it back to its initial volume, transformation: $(1\rightarrow 2)$. An isochoric cooling that brings it back to its initial state, transformation: $(2\rightarrow0)$. - 1. Represent the course of this cycle of transformations in the diagram (P on the y-axis, V on the x-axis). Use an arbitrary scale. - 2. At what temperature does the isothermal compression take place? Deduce the maximum pressure reached. - 3. Calculate the works W_{01} , W_{12} , W_{20} and the amounts of heat Q_{01} , Q_{12} and Q_{20} exchanged by the system during the cycle, as a function of P_0 , V_0 , and $\gamma = \frac{c_P}{c_V} = 1.4$ (γ assumed constant in the temperature range studied). - 4. Verify that $\Delta U = 0$ for the cycle. ## Exercise 03: A container closed by a movable piston contains n = 0.5 mole of an ideal gas, initially in a state A where its volume is $V_A = 5$ liters and where its temperature is $T_A = 287$ K. This gas is carried, reversibly to a state B where its volume is $V_B = 20$ liters and its temperature is $T_B = 350$ K. The ratio of heat capacities of this gas is: $\gamma = 1.4$. We give R = 8.32 J/mole.K. The transition from state A to state B takes place along two different paths: - 1stpath: isochoric heating from state A to state C (TC = 350 K) followed by isothermal expansion from state C to state B. - 2^{nd} path: isothermal expansion from state A to state D (V_D = V_B) followed by isochoric heating from state D to state B. - 1. Represent the previous transformations in the Clapeyron diagram (P, V). Arbitrary scale. - 2. Express then calculate the work W_{ACB} and the quantity of heat Q_{ACB} exchanged by the gas as well as its variation in internal energy ΔU_{ACB} . We give l = p for an ideal gas. - 3. Express then calculate the work W_{ADB} and the quantity of heat Q_{ADB} Acadimic year: 2023/2024 Semester: 04 Level: L₂ Physics - exchanged by the gas as well as its variation in internal energy ΔU_{ADB} . - 4. Compare the quantities W, Q and ΔU . Conclude and comment on your results. We give the Mayer relation: C_P – C_V = nR. C_P and C_V are the heat capacities respectively at constant pressure and volume. ### Exercise 04: An ideal gas is enclosed in a thermally insulated vertical cylinder fitted with a frictionless moving piston. Initially, the gas is in equilibrium and its state is described by the parameters (or variables) V_1 = 12,5 10⁻²m³, P_1 = 2,5 10⁵Pa et T_1 = 300 K. The ratio of gas heat capacities is γ = 7/5. We give R = 8.32 J/mole.K. - 1. Starting from equilibrium state 1 (initial state), small masses are added one by one until its pressure becomes $P_2 = 7.5 \ 10^5 \ Pa$. As a result of this operation, the gas reaches an equilibrium state 2 described by the parameters V_2 , P_2 , and T_2 . - a. What is the nature of the transformation undergone by the gas? Justify your answer. - b. Calculate the volume V_2 , the temperature T_2 , the change in internal energy of the gas, and the work exchanged by the gas (direct calculation of work is not required). - 2. The gas being in equilibrium in state 2, the cylinder is no longer thermally insulated. The temperature of the external environment is $T_0 = 300$ K. Following this operation, the gas evolves towards a new state of equilibrium 3. - c. What is the nature of the transformation undergone by the gas? Justify your answer. - d. In the final state we have $P_3 = P_2$. Justify this equality. Determine the temperature T_3 and the volume V_3 . - e. Calculate the change in internal energy of the gas. ### Exercise: 05 In the mountains, we need 5 liters of hot water at 40°C from ice taken on site. The ice temperature is -18°C. 5 kilograms of ice are melted in a kettle on a gas stove. - 1. Where does the heat that melts the ice come from? - 2. What is the name given to the change of state described above? - 3. Calculate the heat quantity: - Q1 to raise the ice temperature from -18°C to 0°C; - Q2 to melt ice at o°C; - Q3 to raise the water temperature from o°C to 40°C. Which of these three steps requires the most heat? We give: The specific heats: C_{water}=4180 J/[kg.°C]; $C_{glace}=2100 \text{ J/[kg.}^{\circ}\text{C]};$ For latent heat: it takes 335kJ, to melt a kilogram of ice at o°C.