
II. Maxwell Equations

1. Electro-magnetostatics laws:

This set of four equations could be expressed as a

double set of decoupled equations since no explicit

relationships exist between electric and magnetic

fields:

ቐ
𝛁. 𝑬 =

𝝆

𝜺𝟎

𝛁 ∧ 𝑬 = 𝟎

; ൝
𝛁. 𝑩 = 𝟎       

𝛁 ∧ 𝑩 = 𝝁𝟎 ଚ⃗

This allows us to study electricity and magnetism as

two distinct and separate phenomena as long as the

spatial distributions of charge and current flow

remain constant in time.
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Faraday hypothesized that if a
current produces a magnetic field,
then the converse should also be true:
A magnetic field should produce a
current in a wire.
To test his hypothesis, he conducted
numerous experiments in his
laboratory in London over a period of
about 10 years (1821-1831)



II. Maxwell Equations

2. Faraday’s law:
 The principle of the experiments conducted by Faraday in his lab in London, consist to

place a conducting loop (sensor) connected to a galvanometer (predecessor

measurement device of voltmeter and amperemeter) next to a conducting coil

connected to a battery (electro-magnet). This latter will produce a magnetic field when

switch is on, with field lines going through the sensor loop.
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 When the switch is turned on and the coil is crossed by a steady

current, a constant magnetic flux is passing through the

measurement loop: 

𝜱[𝑾𝒃] = න 𝑩. 𝒅𝑺
𝑺

But no current was detected by the measurement loop. Even

repeated many times, but without a success to detect any current

produced by magnetic field as Faraday hypothesized.
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2. Faraday’s law:
 After many attempts, Faraday noticed that the galvanometer needle showed a

momentary deflection, indicating the presence of a current for a very short period,

during the switching on or off of the coil circuit connected to the battery.
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 He also remarked, that the direction of the current in the loop

depends wether the flux is increasing (battery being connected)

or decreasing (battery being disconnected).

 Consequently, Faraday deduced that the induced current in the loop appeared only when

the magnetic flux crossing the loop area changes

 Besides that, Faraday noticed that if the loop is turning or

moving either closer to or away from the inducing coil. Which

an equivalent change of the magnetic flux against the loop:

relative movement.
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2. Faraday’s law:
 As an important consequence, when the galvanometer detects the flow of current

through the loop, a voltage has been induced across the terminals of the galvanometer.

Faraday called this voltage “electromotive force” (emf), 𝑽𝒆𝒎𝒇, and the whole phenomenon

is called “Electromagnetic induction”.
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variation by the simple law (Faraday’s law):

𝑽𝒆𝒎𝒇 = −
𝒅𝜱

𝒅𝒕
= −

𝒅

𝒅𝒕
න 𝑩. 𝒅𝑺

𝑺

 For a closed conducting loop of N turns, the law could

be generalized to :

𝑽𝒆𝒎𝒇 = −𝑵
𝒅𝜱

𝒅𝒕
= −𝑵

𝒅

𝒅𝒕
න 𝑩. 𝒅𝑺

𝑺
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2. Faraday’s law:
Accordingly, an EMF can be generated in a closed conducting loop under any of the

following conditions:

 A time-varying magnetic field linking a stationary loop; the induced emf is then

called the “transformer emf” 𝒆𝒎𝒇
𝒕𝒓

 A moving loop with a time-varying area (relative to the normal component of B)

in a static field B; the induced emf is then called “the motional emf”, 𝒆𝒎𝒇
𝒎

 A moving loop in a time-varying field

The total emf is given by:

𝒆𝒎𝒇 𝒆𝒎𝒇
𝒕𝒓

𝒆𝒎𝒇
𝒎

With 𝑽𝒆𝒎𝒇
𝒎 = 𝟎 if the loop is stationary, and 𝑽𝒆𝒎𝒇

𝒕𝒓 = 𝟎 if 𝑩 is static
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II. Maxwell Equations

2. Faraday’s law:
Let’s examine the case of a conducting loop with unique turn (steady S) existing in

variable magnetic field . In this situation, the former law of Faraday:

𝒆𝒎𝒇
𝑺 𝑺

At the same time, according to integral law of electric field with electric potential:

𝒆𝒎𝒇
𝑪

By comparison, and using the Stokes’s theorem, we can write:

𝑪 𝑺 𝑺
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3. Electrodynamics laws:

When we have a varying magnetic field, the four

equations of electrodynamics are given by:

𝛁. 𝑬 =
𝝆

𝜺𝟎
                             𝐺𝑎𝑢𝑠𝑠ᇱ𝑠 𝑙𝑎𝑤

𝛁 ∧ 𝑬 = −
𝝏𝑩

𝝏𝒕
              (𝐹𝑎𝑟𝑎𝑑𝑎𝑦ᇱ𝑠 𝐿𝑎𝑤)

𝛁. 𝑩 = 𝟎   (𝐺𝑎𝑢𝑠𝑠 𝐿𝑎𝑤 𝑓𝑜𝑟 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑠𝑚)

𝛁 ∧ 𝑩 = 𝝁𝟎 ଚ⃗                    (𝐴𝑚𝑝𝑒𝑟𝑒ᇱ𝑠 𝐿𝑎𝑤)

This also assumes that the magnetic field is

induced by a time-varying current 𝑰(𝒕).
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4. Charge-Current continuity relation:

In time-varying case, it is possible to connect the

charge density 𝝆 to the current ଚ⃗. This is done by

considering the definition of an electric current:

𝑰 = −
𝒅𝑸 𝒕

𝒅𝒕
= −

𝒅

𝒅𝒕
න 𝝆. 𝒅𝑽

𝑽

        (𝟓)

The sign (-) is introduced here to relate the

conventional sense of the current with the

variation amount of elementary charged particles

(electrons).

Let’s now consider the current density:

𝑰 = ර 𝑱⃗. 𝒅𝑺
𝑺

           (𝟔)
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4. Charge-Current continuity relation:

To compare both equations (5) and (6), we need

only to change the surface integral into volume

integral by using divergent theorem for eq. 6:

𝑰 = ර 𝑱⃗. 𝒅𝑺
𝑺

= න 𝛁. 𝑱⃗
𝑽

𝒅𝑽

Now when compared to eq. 5:

𝑰 = −
𝒅𝑸 𝒕

𝒅𝒕
= −

𝒅

𝒅𝒕
න 𝝆. 𝒅𝑽

𝑽

= − න
𝝏𝝆

𝝏𝒕
. 𝒅𝑽

𝑽

It comes that:

𝜵. 𝑱⃗ = −
𝝏𝝆

𝝏𝒕
𝜵. 𝑱⃗ +

𝝏𝝆

𝝏𝒕
= 𝟎

Known as “Charge continuity equation”

In the case of time-conservative charge density:

𝝆 ≠ 𝝆(𝒕)

We get : 𝜵. 𝑱⃗ = 𝟎

It means that the net current flowing out of the

volume is zero, or equivalently that, the incoming

flow into V is equal to the outcoming one.
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4. Charge-Current continuity relation:
From the previous result, of constant flow:

𝜵. 𝑱⃗ = 𝟎

We can return to the integral form to find that:

𝜵. 𝑱⃗ = 𝟎 → න ଚ⃗. 𝒅𝑺
𝑺

= 𝟎

Known as “Kirchhoff’s current law”.

The discrete form of this law is encountered in

circuits analysis as “nodes law”:

෍ 𝑰𝒏

𝒏

= 𝟎

It will be only sufficient to consider the junction of

connected conducting wires as a volume enclosed

into a surface and different currents are flow

to/from it.


