
University Djilali Bounaama, Khemis Miliana, 
DBKM 

Faculty of Material Sciences and Computer Science 
 

 

 

COURSE NOTES 

 ARRAYS 

By: Seddik KHERROUBI 

Definition: 
              An array is a collection of elements of the same type, accessed using integer 
indices. The elements of an array are arranged along one or more axes, which are referred 
to as the dimensions of the array. In one-dimensional arrays (which can represent 
mathematical vectors), each element is identified by a single integer. However, Fortran 
allows arrays with up to 7 dimensions. 

A one-dimensional array is sometimes referred to as a vector. It can be represented in the 
following form: 

L(1) L(2) L(3) L(4) …………………………………. L(n) 

 Array dimension: 1 

 Array size: n 

 The L(i), i=1, 2, …, n (must be of the same type) 

 

Array declaration: 
            As with simple variables, the type of the array must be specified. All elements of the 
array are of the same type. If the array name appears in a type declaration (REAL, INTEGER, 
etc.), the type is resolved. Otherwise, if the array is declared using the DIMENSION 
specifier, the first letter of the array name can be used to determine its type. If this letter is I, 
J, K, L, M, or N, the array is of integer type. Otherwise, it is of real type. 

Examples: 
REAL, DIMENSION(:) :: A(10), B(15, 5), C(3, 7, 9) 

These declarations indicate: 

 A is a one-dimensional real array with 10 elements (vector). 

 B is a two-dimensional real array with 15 rows and 5 columns (matrix). 

 C is a three-dimensional real array with dimensions 3, 7, and 9. 

These examples demonstrate how to declare arrays in Fortran by specifying their type and 
dimensions. 

 

Terminology of Arrays: 

 



 Rank of an array: the number of dimensions it has. 

 Extent of an array along one of its dimensions: the number of elements in that 
dimension. 

 Bounds of an array along one of its dimensions: the lower and upper limits of the 
indices in that dimension. The default lower bound is 1. 

 Shape of an array: a vector whose components are the extents of the array along its 
dimensions; its size is equal to the rank of the array. 

 Size of an array: the total number of elements in the array, which is the product of 
the elements of the vector that represents its shape. 
(Two arrays are said to be conformant if they have the same shape.) 

 

 

Declaration of an Array: 

 The declaration of an array is done using the DIMENSION attribute, which specifies 
the shape of the array, and optionally the bounds separated by the ":" symbol. 

 Examples: 
REAL, DIMENSION X(15) 
REAL, DIMENSION Y(1:5, 1:3) 
REAL, DIMENSION Z(-1:3, 0:2) 

The array X has a rank of 1, Y and Z have a rank of 2. 
The extent of X is 15, while Y and Z have extents of 5 and 3. 
The shape of X is the vector (/15/), and the shape of Y and Z is the vector (/5, 3/). The 
size of arrays X, Y, and Z is 15. 
The arrays Y and Z are conformant, meaning they have the same shape. 

 

Array Construction and Display: 

 To construct a one-dimensional array, you can list its elements and enclose them in (/ 
... /). Here are a few examples: 

 (/ 1, 2, 3 /) produces the array [1, 2, 3]. 

 (/ (i, i=1, 100) /) and (/ (i, i=1, 100, 2) /) produce, respectively, the arrays [1, 2, 
..., 100] (the array of odd numbers from 1 to 100). 

You can combine this approach, as shown in the example (/ (0, (j, j=1, 5), 0, i=1, 6) /), 
which generates an array of size 42, consisting of 6 repetitions of the sequence 0, 1, 2, 3, 4, 
5, 0. 

The reshape command (X, (/ m, n /)) allows you to create a rectangular array of size m × n 
from a one-dimensional array of size mn. The elements are filled successively, row by row. 
For example, reshape((/ ((i + j, i=1, 100), j=1, 100) /), (/ 100, 100 /)) constructs the 
addition table of the first 100 integers. 

  Program  

 Implicit none 

 Real, dimension(10) :: x 

 Integer :: i 

 Do i = 1, 10 

 x(i) = i**2     Dnd do 

 Do i = 1, 10 



 Write(*,*) "x(", i, ") = ", x(i)   

 End do 

 End  

 

Function Reshape: 

 The RESHAPE function in Fortran allows you to modify the shape of a multidimensional 
array. This function takes two arguments: the original array and the desired new shape. 
The original array is reorganized to match the new shape by filling the elements in the 
order of memory storage. 
The filling of the array when reshaping depends on the storage order of the elements in 
memory. In Fortran, the default storage order for multidimensional arrays is column-major 
convention, also known as Fortran order. This means that the elements are stored column-
wise, so the elements of the first column are stored contiguously, followed by the elements 
of the second column, and so on. 
When the RESHAPE function is called with a new number of dimensions or a new shape for 
the array, the compiler calculates the new size and shape of the array. Then it fills the 
elements of the array in storage order, taking the elements from the original array in the 
corresponding order. 
 
For example if the original array has the shape (3, 4) and follows the Fortran storage order, 
where elements are stored column-wise, the array can be represented as: 
A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2) A(1,3) A(2,3) A(3,3) A(1,4) A(2,4) A(3,4) 
If the RESHAPE function is called with the new shape (6, 2), the compiler will fill the new 
array by taking the elements from the old array in the following order: 
A(1,1) A(2,1) A(3,1) A(4,1) A(5,1) A(6,1) A(1,2) A(2,2) A(3,2) A(4,3) A(5,2) A(6,2) 
Note: If the specified new shape for the array does not match the total size of the original 
array, a compilation or runtime error may occur. 
Example: 
a = RESHAPE([2.0, 3.0, 1.0, 0.0, -1.0, 4.0, -2.0, 5.0, 2.0], [3, 3]) 
The statement a = RESHAPE([2.0, 3.0, 1.0, 0.0, -1.0, 4.0, -2.0, 5.0, 2.0], [3, 3]) in Fortran 
creates an array a with dimensions 3x3 and stores the elements accordingly. 

 

2 0 2 

3 1 5 

1 4 2 

In this case, the elements [2.0, 3.0, 1.0] correspond to the first column of array a, the 
elements [0.0, -1.0, 4.0] correspond to the second column, and the elements [-2.0, 5.0, 2.0] 
correspond to the third column. Therefore, the new array a will have the following shape: 

Dynamic Allocation: 
Definition: 
        Dynamic allocation (or dynamic memory allocation) is a computer process that allows 
reserving memory space in the heap of a running program. This technique enables the 
creation of variables, arrays, and data structures with unknown or variable sizes, unlike 
static allocation, which requires knowing the size in advance. 
In programming languages, an "allocatable" is a type of variable that can be declared to be 
dynamically allocated. The dynamic allocation operation (allocate) reserves memory space 
for this variable, while the deallocate operation frees up this space and makes it available 
for other uses. 



 

 program allocation_tab 
implicit none 
integer, allocatable :: tab(:) 
integer :: n, i 
write(*,*) "Entrez la taille du tableau :" 
read(*,*) n 
allocate (tab(n)) 
do i = 1, n 
tab(i) = i 
end do 
write(*,*) "Contenu du tableau :" 
write(*,*) tab 
deallocate(tab) 
End 

In the example you provided, it declares an integer array tab using the syntax integer, 
allocatable :: tab(:). Then, it prompts the user to enter the size of the array using read(*,*) n. 
Next, it uses the dynamic allocation operation allocate(tab(n)) to allocate memory for the 
array tab with size n. After that, it initializes the array with increasing values from 1 to n, 
and finally, it displays the content of the array using write(*,*) tab. At the end, the allocated 
memory for the array is deallocated using deallocate(tab). 

Notes: 
Real, dimension (100) 
It is important to note that the size of the memory allocated for the array or vector V depends on the 
size of the elements in the array. If you declare V as an array of integers, each element will typically 
take up 4 bytes of memory (32 bits) on most architectures, so the total size of the memory allocated 
for V would be 400 bytes. If you declare V as an array of reals (or floats), each element will 
typically take up 8 bytes of memory (64 bits) on most architectures,  so the total size of the memory 
allocated for V would be 800 bytes.  

Examples:  

tab(100,100) For a 32-bit operating system, the allocation would be (100x100x4 = 40000 
bytes). For a 64-bit operating system, the allocation would be (100x100x8 = 80000 bytes). 


