Djilali Bounaama –Khemis Miliana University Faculty of Matter Science and Computer Science Course of Physics 2: Electricity 1st year Bachelor's degree mathematics and computer science Academic year: 2023/2024

Home work 1

Exercice1 :

A sphere with center O and radius R contains a uniformly distributed charge with a density of volume $\rho.$

- 1- Find the expression of the electric field E(r) by applying GAUSS's theorem.
- 2- Deduct the electric potential V (r).

Exercice2 :

Consider a sphere of radius R with a charge Q uniformly distributed over its surface with a density σ .

- 1- Applying the GAUSS theorem, calculate the electric field at any point in space.
- 2- Deduct the electric potential at any point in space.

Exercice 3:

Let be two concentric spheres of center O of respective radius R_1 and R_2 such that $R_1 < R_2$. The sphere of radius R_1 is surface-charged with a density σ . The second of radius R_2 carries a surface distribution of density σ'

1- Using the GAUSS theorem, find the expression of the electrostatic field E(r) at any point in space.

2- Derive the expression of the electric potential V(r) at any point in space.

Exercice 4:

We consider two infinitely long coaxial cylinders, with radius R_1 , R_2 such that $R_1 < R_2$; carrying respective loads $+\lambda$ and $-\lambda$ per unit length.

• Find the expression of the electric field at any point in space.

Exercice 5:

Let be two coaxial cylinders of radius R_1 and R_2 such as $R_1 < R2$ and of infinite height. The cylinder of radius R_1 has a surface distribution of density $\sigma_1 = \sigma > 0$. Similarly, the second cylinder of radius R_2 carries a surface distribution of density $\sigma_2 = 2\sigma > 0$

1- Using Gauss's theorem, find the expression for the electrostatic field E(r) at any point in space.

2- Derive the expression of the electric potential V(r) for $r > R_2$.

