Université Djialli Bounaama de Khemis Miliana/Faculté des Sciences et de la Technologie
Département de Technologie Niveau et Spécialité: Master 2/Systèmes de Télécom
Année universitaire :2017/2018 Semestre 3 Matière: Télévision numérique A.BOUNIF
TP N0 2: Etude, Implémentation et évaluation du MPEG2 sous Matlab	
I) Introduction : La norme MPEG2 est une norme internationale pour la mise en forme des signaux vidéo (image) et audio(Son) des services de télévision numérique. Elle est utilisée pour les services gratuits en définition standard.
MPEG = Motion Picture Expert Group (Groupe d’Experts de l’Image Animée), groupe international d’ingénieurs de recherche et développement qui a mis au point une série de normes et recommandations techniques pour la compression des signaux audio et vidéo numériques sans perte de qualité dans la perception des signaux restitués.
II) Les principes de bases de la compression :

Dans la norme CCIR 601, puis dans le 4.1.1 et le 4.2.0, chaque pixel est codé indépendamment des autres. L’idée à la base de tous les systèmes de compression vidéo (mais aussi audio) est d’exploiter les redondances qui existent naturellement dans des images vidéo, voire de les éliminer pour réduire la quantité et le débit d’informations à transmettre.
Ces redondances sont de quatre ordres :
· Les redondances spatiales : dans les grandes plages uniformes à l’intérieur d'une image, il existe de nombreuses similitudes entre des points voisins.
· Les redondances temporelles : dans une séquence vidéo, les différences entre deux images successives sont minimes. On ne va coder que les différences entre des images successives et ne transmettre que les changements.
· Les redondances subjectives : il est inutile de coder les détails fins que l’œil ne voit pas.
· Les redondances statistiques : on utilise des traitements purement informatiques qui exploitent par exemple les similitudes dans les suites de valeurs numériques.

Ne pas transmettre un élément déjà transmis.
Ne pas transmettre ce que l’on ne voit pas ou ce que l’on n’entend pas.

III) La séquence MPEG. Les différents types d’images :

Une séquence vidéo à la norme MPEG-2 peut être composée de trois types d’images :
- les images Intra (I) - les images Prédites (P) - les images bidirectionnelles (B)
Toutes ces images ne sont pas traitées et compressées de la même façon.

[image:]

IV) (
%%%
…………………………………………………

mri = uint8(zeros(128,128,1,27));
for
 frame=1:27
 [mri(:,:,:,frame),map] = imread(
'mri.tif'
,frame);
end

mov = immovie(mri,map);
implay(mov);
) Manipulation des séquences vidéo
1) Exécuter le script Matlab ci-contre :
a) Quelle est la tâche réalisée ?
b) Afficher l’image traitée.
c) Commenter chaque ligne de ce pg
2) Taper le 2eme script Matlab.
a) Visualiser le résultat de simulation.
b) Commenter chaque ligne de ce pg.
c) Quelle est la tâche réalisée ?
 (
%%%%%%
…………………………………………………………………………
trafficObj = mmreader(
'traffic.avi'
);

%
…………………………………………………………………………
get(trafficObj)

%

…………………………………………………………………………
implay(
'traffic.avi'
);

%

…………………………………………………………………………
darkCarValue = 50;

%

…………………………………………………………………………
darkCar = rgb2gray(read(trafficObj,71));

%

…………………………………………………………………………
noDarkCar = imextendedmax(darkCar, darkCarValue);

%

…………………………………………………………………………
imshow(darkCar)

%

…………………………………………………………………………
figure, imshow(noDarkCar)

%

…………………………………………………………………………
sedisk = strel(
'disk'
,2);

%

…………………………………………………………………………
noSmallStructures = imopen(noDarkCar, sedisk);

%

…………………………………………………………………………
imshow(noSmallStructures)

%

…………………………………………………………………………

nframes = get(trafficObj,
'NumberOfFrames'
);

%

…………………………………………………………………………
 I = read(trafficObj, 1);
taggedCars = zeros([size(I,1) size(I,2) 3 nframes], class(I));

%

………………………………………………

for
 k = 1 : nframes
 singleFrame = read(trafficObj, k);

%

…………………………………………………………………………

% Convert to grayscale to do morphological processing.
 I = rgb2gray(singleFrame);

%

…………………………………………………………………………

% Remove dark cars.
 noDarkCars = imextendedmax(I, darkCarValue);

%

…………………………………………………………………………

% Remove lane markings and other non-disk shaped structures.
 noSmallStructures = imopen(noDarkCars, sedisk);

%

…………………………………………………………………………

% Remove small structures.
 noSmallStructures = bwareaopen(noSmallStructures, 150);

%

…………………………………………………………………

% Get the area and centroid of each remaining object in the
%
frame. The

object with the largest area is the light-colored
%
car. Create a copy

of the original frame and tag the car
%
by changing the centroid pixel

value to red.
 taggedCars(:,:,:,k) = singleFrame;

%

…………………………………………………………………………

 stats =
regionprops(noSmallStructures,
{
'Centroid'
,
'Area'
});

if
 ~isempty([stats.Area])
 areaArray = [stats.Area];
 [junk,idx] = max(areaArray);
 c = stats(idx).Centroid;
 c = floor(fliplr(c));
 width = 2;
 row = c(1)-width:c(1)+width;
 col = c(2)-width:c(2)+width;
 taggedCars(row,col,1,k) = 255;
 taggedCars(row,col,2,k) = 0;
 taggedCars(row,col,3,k) = 0;

end
end
%Run the following commands to see taggedCars in implay.
frameRate = get(trafficObj,
'FrameRate'
);
implay(taggedCars,frameRate);
)

	

V) Exemple d’un codage MPEG-2
 4 Estimation du mouvement en Matlab
1. Pour commencer, il faut extraire les contenu du fichier motion estimation.zip dans le r´epertoire de travail.
2. Lancez Matlab et ouvrez script me demo.m
3. Ex´ecutez ce script, et v´erifiez le r´esultat
4. Modifiez les param`etres de l’estimation du mouvement (taille des blocs, fenˆetre de recherche), et v´erifiez le
r´esultat sur : qualit´e de la pr´ediction, temps de calcul, coˆut de codage des vecteurs. Quelle est la configuration
optimale ?
5. Quelle est la strat´egie de recherche impl´ement´e dans cette exemple ?
% Example of MPEG-2 style coding. This function will get a movie, encode
% it, decode it, and write the MPEG data and both movie versions to disk
% for later playback and analysis. (See companion functions 'playlast' and
% 'quiverplot'.)% % By Steve Hoelzer % 2005-4-18
 (
fprintf(
'\nMPEG Project\n'
)

nf = 10;
% Number of frames to process, 0 = process entire movie
fprintf(
'%i frames\n'
,nf)
mov = getmov(nf);
 tic
mpeg = encmov(mov);
fprintf(
'Encode time: %s\n'
,sec2timestr(toc))
tic
mov2 = decmpeg(mpeg);
fprintf(
'Decode time:
%s\n'
,sec2timestr(toc))

save
lastmov

mov

mpeg

mov2
implay(mov2)
)%
% ECE 434, Multimedia Communication Networks
% Professor Marilyn Andrews
% University of Illinois at Chicago (UIC)
1) Essayer de simuler le programme ci-contre.
2) Combien de fonction a-t-on besoin pour faire
fonctionner un projet MPEG-2?
3) On vous donne une liste des fonctions, pour choisir
celles qui sont nécessaires, comme suit :

function rgb = convertYuvToRgb(yuv)
% convert row vector YUV [0, 255]
%in row vector RGB [0, 255]
% load conversion matrices
load conversion.mat;
yuv = double(yuv);

yuv(:, 2 : 3) = yuv(:, 2 : 3) - 127;
rgb = (yuvToRgb *yuv.').';

rgb = uint8(clipValue(rgb, 0, 255));
%%==
function varargout = figuresc(sf)
% figuresc(sf) creates a normal figure except that figure size is controlled by
% the scaling factor, sf. The scaling factor is relative to screen size so 1.0
% makes the figure fill the entire screen. Note that the display portion of the
% window will be the same size as the screen. The window border will be outside
% of that so sf = 1.0 usually doesn't look good. Smaller scale factors adjust
% height and width proportionally and center the figure.
%
% The scaling factor can be a single value (sf = 0.8) to scale width and height
% identically or two values (sf = [0.8, 0.6]) to scale width and height
% seperately. The scaling factor(s) must be between 0.0 and 1.0.
%
% Demo code (and fun too!):
% for sf = 0.9:-0.1:0.1, figuresc(sf), end
%
% Steve Hoelzer
% 2004-Sep-02 - Created
% 2004-Sep-03 - Option to scale width and height independently
% 2004-Oct-22 - Pass out figure handle if requested
% 2005-Mar-16 - Don't show figure handle on command line

% Error checking
if any(sf < 0.0) | any(sf > 1)
 error('Scaling factor must be between 0.0 and 1.0')
end

% Scale width and height identically if sf has a single element
if numel(sf) == 1
 sf = [sf sf];
end

% Calculate [left, bottom, width, height]
pos = [(1-sf)/2, sf];

% Display figure
f = figure('Units','Normalized', ...
 'Position',pos(:)); % pos is always a vector

if nargout > 0
 varargout{1} = f;
end

% function mov = loadFileYuv(fileName, width, height, nrFrame)
%%%%%%%%%%%%===
function [mov,imgRgb] = loadFileY4m(fileName, width, height, nrFrame)
% load RGB movie [0, 255] from YUV 4:2:0 file

fileId = fopen(fileName, 'r');

subSampleMat = [1, 1; 1, 1];

dummy = fgetl(fileId); % Skip file header

progressbar
for f = 1:nrFrame
 f

 % Skip frame header
 dummy = fgetl(fileId);

 % read Y component
 buf = fread(fileId, width * height, 'uchar');
 imgYuv(:, :, 1) = reshape(buf, width, height).'; % reshape

 % read U component
 buf = fread(fileId, width / 2 * height / 2, 'uchar');
 buf = reshape(buf, width / 2, height / 2).';
 imgYuv(:, :, 2) = kron(buf, subSampleMat); % reshape and upsample

 % read V component
 buf = fread(fileId, width / 2 * height / 2, 'uchar');
 buf = reshape(buf, width / 2, height / 2).';
 imgYuv(:, :, 3) = kron(buf, subSampleMat); % reshape and upsample

 % convert YUV to RGB
 imgRgb = reshape(convertYuvToRgb(reshape(imgYuv, height * width, 3)), height, width, 3);
 mov(f) = im2frame(imgRgb);

 progressbar(f/nrFrame)
end
fclose(fileId);

% function mov = loadFileYuv(fileName, width, height, idxFrame)
 %%%%%%%%%%%%===
function [mov,imgRgb] = loadFileYuv(fileName, width, height, idxFrame)
% load RGB movie [0, 255] from YUV 4:2:0 file

fileId = fopen(fileName, 'r');

subSampleMat = [1, 1; 1, 1];
nrFrame = length(idxFrame);
sizeFrame = 1.5 * width * height;

progressbar
for f = 1 : 1 : nrFrame
 f

 % search fileId position
 fseek(fileId, (idxFrame(f) - 1) * sizeFrame, 'bof');

 % read Y component
 buf = fread(fileId, width * height, 'uchar');
 imgYuv(:, :, 1) = reshape(buf, width, height).'; % reshape

 % read U component
 buf = fread(fileId, width / 2 * height / 2, 'uchar');
 imgYuv(:, :, 2) = kron(reshape(buf, width / 2, height / 2).', subSampleMat); % reshape and upsample

 % read V component
 buf = fread(fileId, width / 2 * height / 2, 'uchar');
 imgYuv(:, :, 3) = kron(reshape(buf, width / 2, height / 2).', subSampleMat); % reshape and upsample

 % normalize YUV values
 % imgYuv = imgYuv / 255;

 % convert YUV to RGB
 imgRgb = reshape(convertYuvToRgb(reshape(imgYuv, height * width, 3)), height, width, 3);
 % imgRgb = ycbcr2rgb(imgYuv);
 %imwrite(imgRgb,'ActualBackground.bmp','bmp');
 mov(f) = im2frame(imgRgb);
 % mov(f).cdata = uint8(imgRgb);
 % mov(f).colormap = [];
 % imwrite(imgRgb,'ActualBackground.bmp','bmp');

 %figure, imshow(imgRgb);
 %name = 'ActualBackground.bmp';
 %Image = imread(name, 'bmp');
 %figure, imshow(Image);

 progressbar(f/nrFrame)
end
fclose(fileId);
%===
function playlast(n)

if isempty(n)
 n = 5;
end

load lastmov

for i = 1:size(mov,4)
 m(i).cdata = uint8([mov(:,:,:,i) mov2(:,:,:,i)]);
 m(i).colormap = [];
end

figuresc([0.9 0.5])
movie(m,n,10)
%%%%%%%%%==============

function progressbar(fractiondone, position)
% Description:
% progressbar(fractiondone,position) provides an indication of the progress of
% some task using graphics and text. Calling progressbar repeatedly will update
% the figure and automatically estimate the amount of time remaining.
% This implementation of progressbar is intended to be extremely simple to use
% while providing a high quality user experience.
%
% Features:
% - Can add progressbar to existing m-files with a single line of code.
% - The figure closes automatically when the task is complete.
% - Only one progressbar can exist so old figures don't clutter the desktop.
% - Remaining time estimate is accurate even if the figure gets closed.
% - Minimal execution time. Won't slow down code.
% - Random color and position options. When a programmer gets bored....
%
% Usage:
% fractiondone specifies what fraction (0.0 - 1.0) of the task is complete.
% Typically, the figure will be updated according to that value. However, if
% fractiondone == 0.0, a new figure is created (an existing figure would be
% closed first). If fractiondone == 1.0, the progressbar figure will close.
% position determines where the progressbar figure appears on screen. This
% argument only has an effect when a progress bar is first created or is reset
% by calling with fractiondone = 0. The progress bar's position can be specifed
% as follows:
% [x, y] - Position of lower left corner in normalized units (0.0 - 1.0)
% 0 - Centered (Default)
% 1 - Upper right
% 2 - Upper left
% 3 - Lower left
% 4 - Lower right
% 5 - Random [x, y] position
% The color of the progressbar is choosen randomly when it is created or
% reset. Clicking inside the figure will cause a random color change.
% For best results, call progressbar(0) (or just progressbar) before starting
% a task. This sets the proper starting time to calculate time remaining.
%
% Example Function Calls:
% progressbar(fractiondone,position)
% progressbar % Initialize/reset
% progressbar(0) % Initialize/reset
% progressbar(0,4) % Initialize/reset and specify position
% progressbar(0,[0.2 0.7]) % Initialize/reset and specify position
% progressbar(0.5) % Update
% progressbar(1) % Close
%
% Demo:
% n = 1000;
% progressbar % Create figure and set starting time
% for i = 1:n
% pause(0.01) % Do something important
% progressbar(i/n) % Update figure
% end
%
% Author: Steve Hoelzer
%
% Revisions:
% 2002-Feb-27 Created function
% 2002-Mar-19 Updated title text order
% 2002-Apr-11 Use floor instead of round for percentdone
% 2002-Jun-06 Updated for speed using patch (Thanks to waitbar.m)
% 2002-Jun-19 Choose random patch color when a new figure is created
% 2002-Jun-24 Click on bar or axes to choose new random color
% 2002-Jun-27 Calc time left, reset progress bar when fractiondone == 0
% 2002-Jun-28 Remove extraText var, add position var
% 2002-Jul-18 fractiondone input is optional
% 2002-Jul-19 Allow position to specify screen coordinates
% 2002-Jul-22 Clear vars used in color change callback routine
% 2002-Jul-29 Position input is always specified in pixels
% 2002-Sep-09 Change order of title bar text
% 2003-Jun-13 Change 'min' to 'm' because of built in function 'min'
% 2003-Sep-08 Use callback for changing color instead of string
% 2003-Sep-10 Use persistent vars for speed, modify titlebarstr
% 2003-Sep-25 Correct titlebarstr for 0% case
% 2003-Nov-25 Clear all persistent vars when percentdone = 100
% 2004-Jan-22 Cleaner reset process, don't create figure if percentdone = 100
% 2004-Jan-27 Handle incorrect position input
% 2004-Feb-16 Minimum time interval between updates
% 2004-Apr-01 Cleaner process of enforcing minimum time interval
% 2004-Oct-08 Seperate function for timeleftstr, expand to include days
% 2004-Oct-20 Efficient if-else structure for sec2timestr
%

persistent progfig progpatch starttime lastupdate

% Set defaults for variables not passed in
if nargin < 1
 fractiondone = 0;
end
if nargin < 2
 position = 0;
end

try
 % Access progfig to see if it exists ('try' will fail if it doesn't)
 dummy = get(progfig,'UserData');
 % If progress bar needs to be reset, close figure and set handle to empty
 if fractiondone == 0
 delete(progfig) % Close progress bar
 progfig = []; % Set to empty so a new progress bar is created
 end
catch
 progfig = []; % Set to empty so a new progress bar is created
end

% If task completed, close figure and clear vars, then exit
percentdone = floor(100*fractiondone);
if percentdone == 100 % Task completed
 delete(progfig) % Close progress bar
 clear progfig progpatch starttime lastupdate % Clear persistent vars
 return
end

% Create new progress bar if needed
if isempty(progfig)

 % Calculate position of progress bar in normalized units
 scrsz = [0 0 1 1];
 width = scrsz(3)/4;
 height = scrsz(4)/50;
 if (length(position) == 1)
 hpad = scrsz(3)/64; % Padding from left or right edge of screen
 vpad = scrsz(4)/24; % Padding from top or bottom edge of screen
 left = scrsz(3)/2 - width/2; % Default
 bottom = scrsz(4)/2 - height/2; % Default
 switch position
 case 0 % Center
 % Do nothing (default)
 case 1 % Top-right
 left = scrsz(3) - width - hpad;
 bottom = scrsz(4) - height - vpad;
 case 2 % Top-left
 left = hpad;
 bottom = scrsz(4) - height - vpad;
 case 3 % Bottom-left
 left = hpad;
 bottom = vpad;
 case 4 % Bottom-right
 left = scrsz(3) - width - hpad;
 bottom = vpad;
 case 5 % Random
 left = rand * (scrsz(3)-width);
 bottom = rand * (scrsz(4)-height);
 otherwise
 warning('position must be (0-5). Reset to 0.')
 end
 position = [left bottom];
 elseif length(position) == 2
 % Error checking on position
 if (position(1) < 0) | (scrsz(3)-width < position(1))
 position(1) = max(min(position(1),scrsz(3)-width),0);
 warning('Horizontal position adjusted to fit on screen.')
 end
 if (position(2) < 0) | (scrsz(4)-height < position(2))
 position(2) = max(min(position(2),scrsz(4)-height),0);
 warning('Vertical position adjusted to fit on screen.')
 end
 else
 error('position is not formatted correctly')
 end

 % Initialize progress bar
 progfig = figure(...
 'Units', 'normalized',...
 'Position', [position width height],...
 'NumberTitle', 'off',...
 'Resize', 'off',...
 'MenuBar', 'none',...
 'BackingStore', 'off');
 progaxes = axes(...
 'Position', [0.02 0.15 0.96 0.70],...
 'XLim', [0 1],...
 'YLim', [0 1],...
 'Box', 'on',...
 'ytick', [],...
 'xtick', []);
 progpatch = patch(...
 'XData', [0 0 0 0],...
 'YData', [0 0 1 1],...
 'EraseMode', 'none');
 set(progfig, 'ButtonDownFcn',{@changecolor,progpatch});
 set(progaxes, 'ButtonDownFcn',{@changecolor,progpatch});
 set(progpatch,'ButtonDownFcn',{@changecolor,progpatch});
 changecolor(0,0,progpatch)

 % Set time of last update to ensure a redraw
 lastupdate = clock - 1;

 % Task starting time reference
 if isempty(starttime) | (fractiondone == 0)
 starttime = clock;
 end

end

% Enforce a minimum time interval between updates
if etime(clock,lastupdate) < 0.01
 return
end

% Update progress patch
set(progpatch,'XData',[0 fractiondone fractiondone 0])

% Update progress figure title bar
if (fractiondone == 0)
 titlebarstr = ' 0%';
else
 runtime = etime(clock,starttime);
 timeleft = runtime/fractiondone - runtime;
 timeleftstr = sec2timestr(timeleft);
 titlebarstr = sprintf('%2d%% %s remaining',percentdone,timeleftstr);
end
set(progfig,'Name',titlebarstr)

% Force redraw to show changes
drawnow

% Record time of this update
lastupdate = clock;

% --
function changecolor(h,e,progpatch)
% Change the color of the progress bar patch

colorlim = 2.8; % Must be <= 3.0 - This keeps the color from being too light
thiscolor = rand(1,3);
while sum(thiscolor) > colorlim
 thiscolor = rand(1,3);
end
set(progpatch,'FaceColor',thiscolor);

% --
function timestr = sec2timestr(sec)
% Convert a time measurement from seconds into a human readable string.

% Convert seconds to other units
d = floor(sec/86400); % Days
sec = sec - d*86400;
h = floor(sec/3600); % Hours
sec = sec - h*3600;
m = floor(sec/60); % Minutes
sec = sec - m*60;
s = floor(sec); % Seconds

% Create time string
if d > 0
 if d > 9
 timestr = sprintf('%d day',d);
 else
 timestr = sprintf('%d day, %d hr',d,h);
 end
elseif h > 0
 if h > 9
 timestr = sprintf('%d hr',h);
 else
 timestr = sprintf('%d hr, %d min',h,m);
 end
elseif m > 0
 if m > 9
 timestr = sprintf('%d min',m);
 else
 timestr = sprintf('%d min, %d sec',m,s);
 end
else
 timestr = sprintf('%d sec',s);
end

function progressbar(fractiondone, position)
% Description:
% progressbar(fractiondone,position) provides an indication of the progress of
% some task using graphics and text. Calling progressbar repeatedly will update
% the figure and automatically estimate the amount of time remaining.
% This implementation of progressbar is intended to be extremely simple to use
% while providing a high quality user experience.
%
% Features:
% - Can add progressbar to existing m-files with a single line of code.
% - The figure closes automatically when the task is complete.
% - Only one progressbar can exist so old figures don't clutter the desktop.
% - Remaining time estimate is accurate even if the figure gets closed.
% - Minimal execution time. Won't slow down code.
% - Random color and position options. When a programmer gets bored....
%
% Usage:
% fractiondone specifies what fraction (0.0 - 1.0) of the task is complete.
% Typically, the figure will be updated according to that value. However, if
% fractiondone == 0.0, a new figure is created (an existing figure would be
% closed first). If fractiondone == 1.0, the progressbar figure will close.
% position determines where the progressbar figure appears on screen. This
% argument only has an effect when a progress bar is first created or is reset
% by calling with fractiondone = 0. The progress bar's position can be specifed
% as follows:
% [x, y] - Position of lower left corner in normalized units (0.0 - 1.0)
% 0 - Centered (Default)
% 1 - Upper right
% 2 - Upper left
% 3 - Lower left
% 4 - Lower right
% 5 - Random [x, y] position
% The color of the progressbar is choosen randomly when it is created or
% reset. Clicking inside the figure will cause a random color change.
% For best results, call progressbar(0) (or just progressbar) before starting
% a task. This sets the proper starting time to calculate time remaining.
%
% Example Function Calls:
% progressbar(fractiondone,position)
% progressbar % Initialize/reset
% progressbar(0) % Initialize/reset
% progressbar(0,4) % Initialize/reset and specify position
% progressbar(0,[0.2 0.7]) % Initialize/reset and specify position
% progressbar(0.5) % Update
% progressbar(1) % Close
%
% Demo:
% n = 1000;
% progressbar % Create figure and set starting time
% for i = 1:n
% pause(0.01) % Do something important
% progressbar(i/n) % Update figure
% end
%
% Author: Steve Hoelzer
%
% Revisions:
% 2002-Feb-27 Created function
% 2002-Mar-19 Updated title text order
% 2002-Apr-11 Use floor instead of round for percentdone
% 2002-Jun-06 Updated for speed using patch (Thanks to waitbar.m)
% 2002-Jun-19 Choose random patch color when a new figure is created
% 2002-Jun-24 Click on bar or axes to choose new random color
% 2002-Jun-27 Calc time left, reset progress bar when fractiondone == 0
% 2002-Jun-28 Remove extraText var, add position var
% 2002-Jul-18 fractiondone input is optional
% 2002-Jul-19 Allow position to specify screen coordinates
% 2002-Jul-22 Clear vars used in color change callback routine
% 2002-Jul-29 Position input is always specified in pixels
% 2002-Sep-09 Change order of title bar text
% 2003-Jun-13 Change 'min' to 'm' because of built in function 'min'
% 2003-Sep-08 Use callback for changing color instead of string
% 2003-Sep-10 Use persistent vars for speed, modify titlebarstr
% 2003-Sep-25 Correct titlebarstr for 0% case
% 2003-Nov-25 Clear all persistent vars when percentdone = 100
% 2004-Jan-22 Cleaner reset process, don't create figure if percentdone = 100
% 2004-Jan-27 Handle incorrect position input
% 2004-Feb-16 Minimum time interval between updates
% 2004-Apr-01 Cleaner process of enforcing minimum time interval
% 2004-Oct-08 Seperate function for timeleftstr, expand to include days
% 2004-Oct-20 Efficient if-else structure for sec2timestr
%

persistent progfig progpatch starttime lastupdate

% Set defaults for variables not passed in
if nargin < 1
 fractiondone = 0;
end
if nargin < 2
 position = 0;
end

try
 % Access progfig to see if it exists ('try' will fail if it doesn't)
 dummy = get(progfig,'UserData');
 % If progress bar needs to be reset, close figure and set handle to empty
 if fractiondone == 0
 delete(progfig) % Close progress bar
 progfig = []; % Set to empty so a new progress bar is created
 end
catch
 progfig = []; % Set to empty so a new progress bar is created
end

% If task completed, close figure and clear vars, then exit
percentdone = floor(100*fractiondone);
if percentdone == 100 % Task completed
 delete(progfig) % Close progress bar
 clear progfig progpatch starttime lastupdate % Clear persistent vars
 return
end

% Create new progress bar if needed
if isempty(progfig)

 % Calculate position of progress bar in normalized units
 scrsz = [0 0 1 1];
 width = scrsz(3)/4;
 height = scrsz(4)/50;
 if (length(position) == 1)
 hpad = scrsz(3)/64; % Padding from left or right edge of screen
 vpad = scrsz(4)/24; % Padding from top or bottom edge of screen
 left = scrsz(3)/2 - width/2; % Default
 bottom = scrsz(4)/2 - height/2; % Default
 switch position
 case 0 % Center
 % Do nothing (default)
 case 1 % Top-right
 left = scrsz(3) - width - hpad;
 bottom = scrsz(4) - height - vpad;
 case 2 % Top-left
 left = hpad;
 bottom = scrsz(4) - height - vpad;
 case 3 % Bottom-left
 left = hpad;
 bottom = vpad;
 case 4 % Bottom-right
 left = scrsz(3) - width - hpad;
 bottom = vpad;
 case 5 % Random
 left = rand * (scrsz(3)-width);
 bottom = rand * (scrsz(4)-height);
 otherwise
 warning('position must be (0-5). Reset to 0.')
 end
 position = [left bottom];
 elseif length(position) == 2
 % Error checking on position
 if (position(1) < 0) | (scrsz(3)-width < position(1))
 position(1) = max(min(position(1),scrsz(3)-width),0);
 warning('Horizontal position adjusted to fit on screen.')
 end
 if (position(2) < 0) | (scrsz(4)-height < position(2))
 position(2) = max(min(position(2),scrsz(4)-height),0);
 warning('Vertical position adjusted to fit on screen.')
 end
 else
 error('position is not formatted correctly')
 end

 % Initialize progress bar
 progfig = figure(...
 'Units', 'normalized',...
 'Position', [position width height],...
 'NumberTitle', 'off',...
 'Resize', 'off',...
 'MenuBar', 'none',...
 'BackingStore', 'off');
 progaxes = axes(...
 'Position', [0.02 0.15 0.96 0.70],...
 'XLim', [0 1],...
 'YLim', [0 1],...
 'Box', 'on',...
 'ytick', [],...
 'xtick', []);
 progpatch = patch(...
 'XData', [0 0 0 0],...
 'YData', [0 0 1 1],...
 'EraseMode', 'none');
 set(progfig, 'ButtonDownFcn',{@changecolor,progpatch});
 set(progaxes, 'ButtonDownFcn',{@changecolor,progpatch});
 set(progpatch,'ButtonDownFcn',{@changecolor,progpatch});
 changecolor(0,0,progpatch)

 % Set time of last update to ensure a redraw
 lastupdate = clock - 1;

 % Task starting time reference
 if isempty(starttime) | (fractiondone == 0)
 starttime = clock;
 end

end

% Enforce a minimum time interval between updates
if etime(clock,lastupdate) < 0.01
 return
end

% Update progress patch
set(progpatch,'XData',[0 fractiondone fractiondone 0])

% Update progress figure title bar
if (fractiondone == 0)
 titlebarstr = ' 0%';
else
 runtime = etime(clock,starttime);
 timeleft = runtime/fractiondone - runtime;
 timeleftstr = sec2timestr(timeleft);
 titlebarstr = sprintf('%2d%% %s remaining',percentdone,timeleftstr);
end
set(progfig,'Name',titlebarstr)

% Force redraw to show changes
drawnow

% Record time of this update
lastupdate = clock;

% --
function changecolor(h,e,progpatch)
% Change the color of the progress bar patch

colorlim = 2.8; % Must be <= 3.0 - This keeps the color from being too light
thiscolor = rand(1,3);
while sum(thiscolor) > colorlim
 thiscolor = rand(1,3);
end
set(progpatch,'FaceColor',thiscolor);

% --
function timestr = sec2timestr(sec)
% Convert a time measurement from seconds into a human readable string.

% Convert seconds to other units
d = floor(sec/86400); % Days
sec = sec - d*86400;
h = floor(sec/3600); % Hours
sec = sec - h*3600;
m = floor(sec/60); % Minutes
sec = sec - m*60;
s = floor(sec); % Seconds

% Create time string
if d > 0
 if d > 9
 timestr = sprintf('%d day',d);
 else
 timestr = sprintf('%d day, %d hr',d,h);
 end
elseif h > 0
 if h > 9
 timestr = sprintf('%d hr',h);
 else
 timestr = sprintf('%d hr, %d min',h,m);
 end
elseif m > 0
 if m > 9
 timestr = sprintf('%d min',m);
 else
 timestr = sprintf('%d min, %d sec',m,s);
 end
else
 timestr = sprintf('%d sec',s);
end

function quiverplot
% Create a plot showing motion vectors for every P frame in a movie.

load lastmov

[M,N] = size(mpeg{1});

for f = 1:length(mpeg)
 if mpeg{f}(1,1).type == 'I'
 continue
 end
 for i = 1:M
 for j = 1:N
 mvx(i,j) = mpeg{f}(i,j).mvy;
 mvy(i,j) = mpeg{f}(i,j).mvx;
 end
 end
 figuresc(0.8)
 quiver(flipud(mvx),flipud(mvy))
 set(gca,'XLim',[-1, N+2],'YLim',[-1, M+2])
 title(sprintf('Motion vectors for frame %i',f))
end
%%%%%%===
function quiverplot
% Create a plot showing motion vectors for every P frame in a movie.

load lastmov

[M,N] = size(mpeg{1});

for f = 1:length(mpeg)
 if mpeg{f}(1,1).type == 'I'
 continue
 end
 for i = 1:M
 for j = 1:N
 mvx(i,j) = mpeg{f}(i,j).mvy;
 mvy(i,j) = mpeg{f}(i,j).mvx;
 end
 end
 figuresc(0.8)
 quiver(flipud(mvx),flipud(mvy))
 set(gca,'XLim',[-1, N+2],'YLim',[-1, M+2])
 title(sprintf('Motion vectors for frame %i',f))
end

function timestr = sec2timestr(sec)
% Convert a time measurement from seconds into a human readable string.
%
% Examples:
% sec2timestr(1) => '1 sec'
% sec2timestr(11) => '11 sec'
% sec2timestr(111) => '1 min, 51 sec'
% sec2timestr(1111) => '18 min'
% sec2timestr(11111) => '3 hr, 5 min'
% sec2timestr(111111) => '1 day, 6 hr'
% sec2timestr(1111111) => '12 day'
%
% Change log:
% 2004-Oct-08 - Steve Hoelzer - Conception
% 2004-Oct-20 - Steve Hoelzer - Efficient if-else structure
%

% Convert seconds to other units
d = floor(sec/86400); % Days
sec = sec - d*86400;
h = floor(sec/3600); % Hours
sec = sec - h*3600;
m = floor(sec/60); % Minutes
sec = sec - m*60;
s = floor(sec); % Seconds

% Create time string
if d > 0
 if d > 9
 timestr = sprintf('%d day',d);
 else
 timestr = sprintf('%d day, %d hr',d,h);
 end
elseif h > 0
 if h > 9
 timestr = sprintf('%d hr',h);
 else
 timestr = sprintf('%d hr, %d min',h,m);
 end
elseif m > 0
 if m > 9
 timestr = sprintf('%d min',m);
 else
 timestr = sprintf('%d min, %d sec',m,s);
 end
else
 timestr = sprintf('%d sec',s);
end
%%%==
function timestr = sec2timestr(sec)
% Convert a time measurement from seconds into a human readable string.
%
% Examples:
% sec2timestr(1) => '1 sec'
% sec2timestr(11) => '11 sec'
% sec2timestr(111) => '1 min, 51 sec'
% sec2timestr(1111) => '18 min'
% sec2timestr(11111) => '3 hr, 5 min'
% sec2timestr(111111) => '1 day, 6 hr'
% sec2timestr(1111111) => '12 day'
%
% Change log:
% 2004-Oct-08 - Steve Hoelzer - Conception
% 2004-Oct-20 - Steve Hoelzer - Efficient if-else structure
%

% Convert seconds to other units
d = floor(sec/86400); % Days
sec = sec - d*86400;
h = floor(sec/3600); % Hours
sec = sec - h*3600;
m = floor(sec/60); % Minutes
sec = sec - m*60;
s = floor(sec); % Seconds

% Create time string
if d > 0
 if d > 9
 timestr = sprintf('%d day',d);
 else
 timestr = sprintf('%d day, %d hr',d,h);
 end
elseif h > 0
 if h > 9
 timestr = sprintf('%d hr',h);
 else
 timestr = sprintf('%d hr, %d min',h,m);
 end
elseif m > 0
 if m > 9
 timestr = sprintf('%d min',m);
 else
 timestr = sprintf('%d min, %d sec',m,s);
 end
else
 timestr = sprintf('%d sec',s);
end

2

image1.emf

