
CHAPTER 4

ALGEBRAIC STRUCTURES

This chapter explores the hierarchy of fundamental algebraic structures: groups, rings, and

fields. Beginning with internal composition laws, we develop group theory including subgroups,

homomorphisms, and Lagrange’s Theorem. The discussion extends to rings, examining ideals

and special elements, culminating in the study of fields with emphasis on finite fields Fp and

classical examples. The chapter demonstrates how these structures abstract and generalize

properties of familiar number systems while providing powerful tools for diverse mathematical

applications.

4.1 Internal Composition Laws

4.1.1 Definition and Basic Properties

Definition 4.1 Let E be a set. An internal composition law (binary operation) on E is

any mapping:

⋆ : E × E −→ E

that assigns to each ordered pair (a, b) ∈ E × E a unique element a ⋆ b ∈ E.

Definition 4.2 A subset F of E is called stable with respect to the law ⋆ if:

∀a, b ∈ F, a ⋆ b ∈ F

Example 33 1. Let A be a set and E = P(A). Then intersection ∩ and union ∪ are internal

composition laws on E, since for all X, Y ∈ P(A), we have X ∩ Y ⊆ A and X ∪ Y ⊆ A.

2. Consider F = {{a, b}, {a, c}, {b, c}} ⊂ P({a, b, c}). Then F is not stable under intersection

or union because:

{a, b} ∩ {a, c} = {a} /∈ F and {a, b} ∪ {a, c} = {a, b, c} /∈ F
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4.1.2 Properties of Composition Laws

Definition 4.3 Let ⋆ and • be two internal composition laws on E. We say that:

⋆ is commutative if: ∀a, b ∈ E, a ⋆ b = b ⋆ a

⋆ is associative if: ∀a, b, c ∈ E, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)

⋆ is distributive over • if: ∀a, b, c ∈ E,

a ⋆ (b • c) = (a ⋆ b) • (a ⋆ c) and (b • c) ⋆ a = (b ⋆ a) • (c ⋆ a)

e ∈ E is a left identity (respectively right identity) for ⋆ if:

∀a ∈ E, e ⋆ a = a (respectively a ⋆ e = a)

Example 34 Let F be a set and E = P(F ). Then:

∩ and ∪ are associative and commutative

∅ is the identity element for ∪
F is the identity element for ∩
∩ is distributive over ∪ and ∪ is distributive over ∩

4.1.3 Identity Elements and Inverses

Proposition 4.1 If a composition law ⋆ has a right identity e′ and a left identity e′′, then

e′ = e′′ and it is the unique identity element of ⋆.

Proof. Let e′ be a right identity and e′′ a left identity. Then:

e′ = e′′ ⋆ e′ (since e′′ is left identity) and e′′ = e′′ ⋆ e′ (since e′ is right identity)

Therefore, e′ = e′′. 2

Definition 4.4 Let ⋆ be a composition law on E with identity element e. An element a ∈ E

is:

right invertible if: ∃a′ ∈ E, a ⋆ a′ = e

left invertible if: ∃a′ ∈ E, a′ ⋆ a = e

invertible (or symmetric) if it is both right and left invertible

Example 35 Consider E = {α, β, γ} with the operation defined by the table:

⋆ α β γ

α α β γ

β β γ α

γ γ α α
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Here:

α is the identity element

α is its own inverse

γ is the inverse of β

Both β and γ are inverses of γ

4.1.4 Uniqueness of Inverses

Proposition 4.2 Let ⋆ be an associative composition law on E with identity element e. If an

element x ∈ E has a right inverse x1 and a left inverse x2, then x1 = x2.

Proof. Suppose x ⋆ x1 = e and x2 ⋆ x = e. Then:

x1 = e ⋆ x1 = (x2 ⋆ x) ⋆ x1 = x2 ⋆ (x ⋆ x1) = x2 ⋆ e = x2

2

Corollary 6 In an associative structure with identity, if an element is invertible, its inverse

is unique.

Proposition 4.3 Let ⋆ be an associative composition law on E with identity element e. Then:

1. The identity element e is invertible and its only inverse is itself

2. If a is invertible with inverse a′, then a′ is also invertible and a is its inverse

3. If a and b are invertible, then a ⋆ b is invertible and (a ⋆ b)−1 = b−1 ⋆ a−1

Proof. Let ⋆ be an associative composition law on E with identity element e.

1. Since e ⋆ e = e, the identity element is its own inverse. If e′ were another inverse of e,

then e ⋆ e′ = e′ ⋆ e = e. But since e is the identity, we also have e ⋆ e′ = e′ and e′ ⋆ e = e′,

so e′ = e.

2. By definition, a ⋆ a′ = a′ ⋆ a = e. This means that a′ is invertible with inverse a, so

(a′)−1 = a.

3. We verify that b−1 ⋆ a−1 is indeed the inverse of a ⋆ b:

(a ⋆ b) ⋆ (b−1 ⋆ a−1) = a ⋆ (b ⋆ b−1) ⋆ a−1

= a ⋆ e ⋆ a−1

= a ⋆ a−1 = e
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(b−1 ⋆ a−1) ⋆ (a ⋆ b) = b−1 ⋆ (a−1 ⋆ a) ⋆ b

= b−1 ⋆ e ⋆ b

= b−1 ⋆ b = e

Therefore, (a ⋆ b)−1 = b−1 ⋆ a−1.

2

4.1.5 Regular Elements

Definition 4.5 Let ⋆ be a composition law on E. An element r ∈ E is:

right regular if: ∀b, c ∈ E, b ⋆ r = c ⋆ r ⇒ b = c

left regular if: ∀b, c ∈ E, r ⋆ b = r ⋆ c⇒ b = c

regular if it is both right and left regular

Proposition 4.4 Let ⋆ be an associative composition law on E with identity element e. Then

every invertible element is regular.

Proof. Let x be invertible with inverse x−1. Suppose a ⋆ x = b ⋆ x. Then:

(a ⋆ x) ⋆ x−1 = (b ⋆ x) ⋆ x−1 ⇒ a ⋆ (x ⋆ x−1) = b ⋆ (x ⋆ x−1) ⇒ a ⋆ e = b ⋆ e⇒ a = b

So x is right regular. Similarly, x is left regular. 2

4.2 Groups

4.2.1 Definition and Examples

Definition 4.6 A group is a set G equipped with an internal composition law ⋆ satisfying:

1. Associativity: ∀a, b, c ∈ G, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)

2. Identity element: ∃e ∈ G,∀a ∈ G, a ⋆ e = e ⋆ a = a

3. Inverses: ∀a ∈ G, ∃a−1 ∈ G, a ⋆ a−1 = a−1 ⋆ a = e

If additionally the law is commutative, the group is called abelian.

Example 36 1. (Z,+), (Q,+), (R,+), (C,+) are abelian groups

2. (Q∗,×), (R∗,×), (C∗,×) are abelian groups (where ∗ denotes nonzero elements)

3. The set of bijections from a set to itself forms a non-abelian group under composition
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4.2.2 Subgroups

Definition 4.7 Let (G, ⋆) be a group. A subset H ⊆ G is called a subgroup of G if:

1. H is non-empty: H ̸= ∅
2. H is closed under the group operation: ∀a, b ∈ H, a ⋆ b ∈ H

3. H contains inverses: ∀a ∈ H, a−1 ∈ H

We denote this by H ≤ G.

Proposition 4.5 (Subgroup Test): A non-empty subset H ⊆ G is a subgroup if and only if:

∀a, b ∈ H, a ⋆ b−1 ∈ H

Proof. (⇒) If H is a subgroup and a, b ∈ H, then b−1 ∈ H and a ⋆ b−1 ∈ H.

(⇐) Suppose H ̸= ∅ and ∀a, b ∈ H, a ⋆ b−1 ∈ H.

Take any a ∈ H. Then a ⋆ a−1 = e ∈ H.

For any a ∈ H, e ⋆ a−1 = a−1 ∈ H.

For any a, b ∈ H, a ⋆ b = a ⋆ (b−1)−1 ∈ H.

Thus H is a subgroup. 2

Example 37 1. In (Z,+), the set nZ = {nk | k ∈ Z} is a subgroup for any n ∈ Z
2. In (R∗,×), the set R+ of positive real numbers is a subgroup

3. In any group G, {e} and G itself are subgroups (trivial subgroups)

4. The set of even permutations forms a subgroup of the symmetric group Sn (the alternating

group An)

Proposition 4.6 Let H and K be subgroups of G. Then:

1. H ∩K is a subgroup of G

2. H ∪K is a subgroup if and only if H ⊆ K or K ⊆ H

Proof. 1. Let H ∩K ̸= ∅ (since e ∈ H ∩K). For any a, b ∈ H ∩K, we have a, b ∈ H and

a, b ∈ K. Since H and K are subgroups, a ⋆ b−1 ∈ H and a ⋆ b−1 ∈ K, so a ⋆ b−1 ∈ H ∩K.

2. (⇒) If H∪K is a subgroup and H ̸⊆ K, then ∃h ∈ H \K. For any k ∈ K, since h, k ∈ H∪K
and H∪K is a subgroup, h⋆k ∈ H∪K. If h⋆k ∈ K, then h = (h⋆k)⋆k−1 ∈ K, contradiction.

So h ⋆ k ∈ H, hence k = h−1 ⋆ (h ⋆ k) ∈ H. Thus K ⊆ H.

(⇐) If H ⊆ K, then H ∪K = K is a subgroup. Similarly if K ⊆ H. 2

4.2.3 Cosets and Lagrange’s Theorem

Definition 4.8 Let H be a subgroup of G and a ∈ G. The sets:

aH = {a ⋆ h | h ∈ H} (left coset)

Ha = {h ⋆ a | h ∈ H} (right coset)

are called the cosets of H in G.
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Proposition 4.7 Let H be a subgroup of G. Then:

1. The cosets of H partition G

2. All cosets have the same cardinality as H

3. aH = bH if and only if a−1 ⋆ b ∈ H

Proof. Let H be a subgroup of G and consider the left cosets of H in G.

1. We need to show that:

� Every element of G belongs to some coset

� Different cosets are either equal or disjoint

For any g ∈ G, we have g ∈ gH since e ∈ H and g = g ⋆ e. Thus every element belongs

to at least one coset.

Now suppose aH ∩ bH ̸= ∅. Then there exist h1, h2 ∈ H such that a ⋆ h1 = b ⋆ h2. This

implies:

a = b ⋆ h2 ⋆ h
−1
1

Let h = h2 ⋆ h
−1
1 ∈ H (since H is a subgroup). Then for any a ⋆ h′ ∈ aH:

a ⋆ h′ = b ⋆ h ⋆ h′ = b ⋆ (h ⋆ h′) ∈ bH

since h ⋆ h′ ∈ H. Thus aH ⊆ bH. Similarly, bH ⊆ aH, so aH = bH.

Therefore, the cosets form a partition of G.

2. Consider the map ϕ : H → aH defined by ϕ(h) = a ⋆ h. This map is:

� Surjective: By definition of aH, every element is of the form a ⋆ h for some h ∈ H.

� Injective: If a ⋆ h1 = a ⋆ h2, then by left cancellation (valid in groups), h1 = h2.

Thus ϕ is a bijection, so |aH| = |H| for all a ∈ G.

3. (⇒) If aH = bH, then b ∈ aH (since b = b ⋆ e ∈ bH). So there exists h ∈ H such that

b = a ⋆ h, which implies a−1 ⋆ b = h ∈ H.

(⇐) If a−1 ⋆ b ∈ H, then for any b ⋆ h ∈ bH:

b ⋆ h = a ⋆ (a−1 ⋆ b) ⋆ h = a ⋆ ((a−1 ⋆ b) ⋆ h) ∈ aH

since (a−1 ⋆ b) ⋆ h ∈ H. Thus bH ⊆ aH.

Conversely, for any a ⋆ h ∈ aH:

a ⋆ h = b ⋆ (b−1 ⋆ a) ⋆ h = b ⋆ ((a−1 ⋆ b)−1 ⋆ h) ∈ bH
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since (a−1 ⋆ b)−1 ⋆ h ∈ H. Thus aH ⊆ bH.

Therefore, aH = bH.

2

Theorem 7 (Lagrange’s Theorem): If G is a finite group and H is a subgroup of G, then

the order of H divides the order of G:

|G| = [G : H] · |H|

where [G : H] is the number of distinct cosets of H in G (the index of H in G).

Proof. Since the cosets partition G and all have size |H|, we have |G| = [G : H] · |H|. 2

Corollary 8 In a finite group G:

1. The order of any element divides |G|
2.If |G| is prime, then G is cyclic

3. For any a ∈ G, a|G| = e

Proof. Let G be a finite group of order n = |G|.
1. Let a ∈ G and consider the cyclic subgroup generated by a:

⟨a⟩ = {ak : k ∈ Z}

The order of a is defined as the smallest positive integer m such that am = e, and this

equals the order of the subgroup ⟨a⟩, i.e., |⟨a⟩| = m.

By Lagrange’s Theorem, since ⟨a⟩ is a subgroup of G, we have:

|G| = [G : ⟨a⟩] · |⟨a⟩|

Therefore, m = |⟨a⟩| divides |G|.

2. Suppose |G| = p where p is prime. Let a ∈ G with a ̸= e. Consider the cyclic subgroup

⟨a⟩. By part (1), the order of a divides p. Since a ̸= e, the order of a cannot be 1, so it

must be p. Therefore:

|⟨a⟩| = p = |G|
which implies ⟨a⟩ = G. Thus G is cyclic, generated by a.

3. Let m be the order of a. By part (1), m divides |G|, so we can write |G| = m · k for some

k ∈ Z+. Then:

a|G| = am·k = (am)k = ek = e

This completes the proof.

2
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4.2.4 Basic Properties of Groups

Proposition 4.8 In any group (G, ⋆):

1. The identity element is unique

2. Every element has a unique inverse

3. ∀a, b ∈ G, (a ⋆ b)−1 = b−1 ⋆ a−1

4. ∀a ∈ G, (a−1)−1 = a

5. Cancellation laws hold: a ⋆ b = a ⋆ c⇒ b = c and b ⋆ a = c ⋆ a⇒ b = c

Proof. Let (G, ⋆) be a group. We prove each property:

1. Uniqueness of the identity element:

Suppose e and e′ are both identity elements in G. Then:

e = e ⋆ e′ (since e′ is an identity)

e ⋆ e′ = e′ (since e is an identity)

Therefore, e = e′. The identity element is unique.

2. Uniqueness of inverses:

Let a ∈ G and suppose b and c are both inverses of a. Then:

b = b ⋆ e = b ⋆ (a ⋆ c) = (b ⋆ a) ⋆ c = e ⋆ c = c

Therefore, the inverse of each element is unique.

3. Inverse of a product: ∀a, b ∈ G, (a ⋆ b)−1 = b−1 ⋆ a−1

We verify that b−1 ⋆ a−1 is indeed the inverse of a ⋆ b:

(a ⋆ b) ⋆ (b−1 ⋆ a−1) = a ⋆ (b ⋆ b−1) ⋆ a−1 = a ⋆ e ⋆ a−1 = a ⋆ a−1 = e

(b−1 ⋆ a−1) ⋆ (a ⋆ b) = b−1 ⋆ (a−1 ⋆ a) ⋆ b = b−1 ⋆ e ⋆ b = b−1 ⋆ b = e

Therefore, (a ⋆ b)−1 = b−1 ⋆ a−1.

4. Inverse of an inverse: ∀a ∈ G, (a−1)−1 = a

By definition, a−1 is the inverse of a, so:

a ⋆ a−1 = a−1 ⋆ a = e

This also means that a is the inverse of a−1, so (a−1)−1 = a.
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5. Cancellation laws:

Left cancellation: a ⋆ b = a ⋆ c⇒ b = c

Multiply both sides on the left by a−1:

a−1 ⋆ (a ⋆ b) = a−1 ⋆ (a ⋆ c)

(a−1 ⋆ a) ⋆ b = (a−1 ⋆ a) ⋆ c

e ⋆ b = e ⋆ c⇒ b = c

Right cancellation: b ⋆ a = c ⋆ a⇒ b = c

Multiply both sides on the right by a−1:

(b ⋆ a) ⋆ a−1 = (c ⋆ a) ⋆ a−1,

b ⋆ (a ⋆ a−1) = c ⋆ (a ⋆ a−1),

b ⋆ e = c ⋆ e⇒ b = c.

2

4.2.5 Homomorphisms

Definition 4.9 Let (G, ⋆) and (H, •) be groups. A function ϕ : G → H is called a group

homomorphism if:

∀a, b ∈ G, ϕ(a ⋆ b) = ϕ(a) • ϕ(b)

Proposition 4.9 Let ϕ : G→ H be a group homomorphism. Then:

1. ϕ(eG) = eH (preserves identity)

2. ∀a ∈ G, ϕ(a−1) = (ϕ(a))−1 (preserves inverses)

3. If K ≤ G, then ϕ(K) ≤ H (image of subgroup is subgroup)

4. If L ≤ H, then ϕ−1(L) ≤ G (preimage of subgroup is subgroup)

Proof. 1. ϕ(eG) = ϕ(eG ⋆ eG) = ϕ(eG) • ϕ(eG), so by cancellation, ϕ(eG) = eH

2. ϕ(a) • ϕ(a−1) = ϕ(a ⋆ a−1) = ϕ(eG) = eH , so ϕ(a
−1) = (ϕ(a))−1

3. Let K ≤ G and take ϕ(a), ϕ(b) ∈ ϕ(K). Then:

ϕ(a) • (ϕ(b))−1 = ϕ(a) • ϕ(b−1) = ϕ(a ⋆ b−1) ∈ ϕ(K)

So ϕ(K) is a subgroup.

4. Let L ≤ H and take a, b ∈ ϕ−1(L). Then:

ϕ(a ⋆ b−1) = ϕ(a) • ϕ(b−1) = ϕ(a) • (ϕ(b))−1 ∈ L

So a ⋆ b−1 ∈ ϕ−1(L), hence ϕ−1(L) is a subgroup. 2
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Definition 4.10 Let ϕ : G→ H be a group homomorphism. The kernel of ϕ is:

ker(ϕ) = {g ∈ G | ϕ(g) = eH}

The image of ϕ is:

Im(ϕ) = {ϕ(g) | g ∈ G}

Proposition 4.10 For any group homomorphism ϕ : G→ H:

1. ker(ϕ) is a normal subgroup of G

2. Im(ϕ) is a subgroup of H

3. ϕ is injective if and only if ker(ϕ) = {eG}

Proof. 1. From Proposition 2.11(4), ker(ϕ) = ϕ−1({eH}) is a subgroup. To show normality:

for any g ∈ G and k ∈ ker(ϕ),

ϕ(g ⋆ k ⋆ g−1) = ϕ(g) • ϕ(k) • ϕ(g−1) = ϕ(g) • eH • (ϕ(g))−1 = eH

So g ⋆ k ⋆ g−1 ∈ ker(ϕ).

2. From Proposition 2.11(3), Im(ϕ) = ϕ(G) is a subgroup.

3. (⇒) If ϕ is injective and ϕ(g) = eH , then ϕ(g) = ϕ(eG), so g = eG.

(⇐) Suppose ker(ϕ) = {eG} and ϕ(a) = ϕ(b). Then:

ϕ(a ⋆ b−1) = ϕ(a) • (ϕ(b))−1 = eH

So a ⋆ b−1 ∈ ker(ϕ) = {eG}, hence a = b. 2

4.2.6 Isomorphisms

Definition 4.11 A group homomorphism ϕ : G→ H is called a group isomorphism if it is

bijective. In this case, we say G and H are isomorphic and write G ∼= H.

Proposition 4.11 Let ϕ : G→ H be a group isomorphism. Then:

1. ϕ−1 : H → G is also a group isomorphism

2. |G| = |H| (isomorphic groups have the same order)

3. G is abelian if and only if H is abelian

4. G is cyclic if and only if H is cyclic

Proof. 1. For any x, y ∈ H, let a = ϕ−1(x), b = ϕ−1(y). Then:

ϕ−1(x • y) = ϕ−1(ϕ(a) • ϕ(b)) = ϕ−1(ϕ(a ⋆ b)) = a ⋆ b = ϕ−1(x) ⋆ ϕ−1(y).
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2. Since ϕ is bijective, |G| = |H|
3. If G is abelian, then for any x, y ∈ H:

x • y = ϕ(ϕ−1(x)) • ϕ(ϕ−1(y)) = ϕ(ϕ−1(x) ⋆ ϕ−1(y)) = ϕ(ϕ−1(y) ⋆ ϕ−1(x)) = y • x.

4. If G = ⟨g⟩, then H = ⟨ϕ(g)⟩. 2

Example 38 1. (R,+) ∼= (R+,×) via the isomorphism ϕ(x) = ex

2. For any cyclic group G of order n, G ∼= Z/nZ
3. The Klein four-group V4 ∼= Z/2Z× Z/2Z
4. S3 (symmetric group on 3 elements) is not isomorphic to Z/6Z because S3 is non-abelian

while Z/6Z is abelian

4.2.7 First Isomorphism Theorem

Theorem 9 (First Isomorphism Theorem): Let ϕ : G → H be a group homomorphism.

Then:

G/ ker(ϕ) ∼= Im(ϕ)

Specifically, the map ψ : G/ ker(ϕ) → Im(ϕ) defined by ψ(g ker(ϕ)) = ϕ(g) is a well-defined

group isomorphism.

Proof. 1. Well-defined: If g ker(ϕ) = h ker(ϕ), then h−1 ⋆ g ∈ ker(ϕ), so:

ϕ(h−1 ⋆ g) = eH ⇒ (ϕ(h))−1 • ϕ(g) = eH ⇒ ϕ(g) = ϕ(h)

2. Homomorphism:

ψ((g ker(ϕ))⋆(h ker(ϕ))) = ψ((g ⋆h) ker(ϕ)) = ϕ(g ⋆h) = ϕ(g)•ϕ(h) = ψ(g ker(ϕ))•ψ(h ker(ϕ))

3. Injective: If ψ(g ker(ϕ)) = eH , then ϕ(g) = eH , so g ∈ ker(ϕ), hence g ker(ϕ) = ker(ϕ)

4. Surjective: For any ϕ(g) ∈ Im(ϕ), we have ψ(g ker(ϕ)) = ϕ(g) 2

Example 39 1. The determinant map det : GLn(R) → R∗ has kernel SLn(R) and image R∗,

so:

GLn(R)/SLn(R) ∼= R∗.

2. The sign homomorphism sgn : Sn → {±1} has kernel An and image {±1}, so:

Sn/An
∼= Z/2Z.

3. The exponential map exp : (R,+) → (R+,×) has kernel {0} and image R+, confirming

(R,+) ∼= (R+,×).
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4.3 Rings

4.3.1 Definition and Basic Properties

Definition 4.12 A ring is a set R equipped with two internal composition laws + (addition)

and × (multiplication) satisfying:

1. (R,+) is an abelian group

2. Multiplication is associative: ∀a, b, c ∈ R, (a× b)× c = a× (b× c)

3. Multiplication is distributive over addition:

a× (b+ c) = (a× b) + (a× c) and (a+ b)× c = (a× c) + (b× c)

The ring is called commutative if multiplication is commutative, and unital if it has a mul-

tiplicative identity.

Example 40 1. (Z,+,×), (Q,+,×), (R,+,×), (C,+,×) are commutative unital rings

2. The set of n× n matrices with real entries forms a non-commutative unital ring

3. The set of even integers forms a commutative ring without unity

4.3.2 Subrings

Definition 4.13 Let (R,+,×) be a ring. A subset S ⊆ R is called a subring of R if:

1. S is non-empty: S ̸= ∅

2. S is closed under subtraction: ∀a, b ∈ S, a− b ∈ S

3. S is closed under multiplication: ∀a, b ∈ S, a× b ∈ S

Proposition 4.12 (Subring Test): A non-empty subset S ⊆ R is a subring if and only if:

∀a, b ∈ S, a− b ∈ S and a× b ∈ S

Proof. The conditions ensure that:

(S,+) is a subgroup of (R,+) (since 0 = a− a ∈ S and −b = 0− b ∈ S).

S is closed under multiplication.

The ring axioms are inherited from R. 2

Example 41 1. In (Z,+,×), the set nZ is a subring for any n ∈ Z

2. In (R,+,×), Z and Q are subrings

3. The set of diagonal matrices is a subring of the ring of n× n matrices

4. The set of continuous functions is a subring of the ring of all real-valued functions
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4.3.3 Special Elements in Rings

Definition 4.14 Let R be a ring with multiplicative identity 1 ̸= 0. An element a ∈ R is:

A unit if it has a multiplicative inverse

A zero divisor if a ̸= 0 and ∃b ̸= 0 such that a× b = 0 or b× a = 0

Nilpotent if ∃n ∈ N∗ such that an = 0

4.4 Rules of Calculation in Rings

Proposition 4.13 (Calculation Rules in Rings) Let R be a ring. For all a, b, c ∈ R:

1. a · 0 = 0 · a = 0

2. a · (−b) = (−a) · b = −(a · b)

3. (−a) · (−b) = a · b

4. a · (b− c) = a · b− a · c

5. (a− b) · c = a · c− b · c

Proof.

1. a · 0 = 0 · a = 0: Using the distributive property and the fact that 0 is the additive

identity:

a · 0 = a · (0 + 0) = a · 0 + a · 0
Adding −(a · 0) to both sides:

a · 0 + [−(a · 0)] = [a · 0 + a · 0] + [−(a · 0)]

0 = a · 0 + [a · 0 + (−(a · 0))] = a · 0 + 0 = a · 0
Similarly, 0 · a = 0 by the same argument.

2. a · (−b) = (−a) · b = −(a · b): First, show a · (−b) = −(a · b):

a · b+ a · (−b) = a · (b+ (−b)) = a · 0 = 0

Therefore, a · (−b) is the additive inverse of a · b, so:

a · (−b) = −(a · b)

Similarly, (−a) · b = −(a · b):

a · b+ (−a) · b = (a+ (−a)) · b = 0 · b = 0

So (−a) · b = −(a · b).
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3. (−a) · (−b) = a · b: Using part 2 twice:

(−a) · (−b) = −[a · (−b)] = −[−(a · b)] = a · b

The last equality holds because the additive inverse of −(a · b) is a · b.

4. a · (b− c) = a · b− a · c:
Using the distributive property and part 2:

a · (b− c) = a · (b+ (−c)) = a · b+ a · (−c) = a · b+ (−(a · c)) = a · b− a · c

5. (a− b) · c = a · c− b · c: Similarly:

(a− b) · c = (a+ (−b)) · c = a · c+ (−b) · c = a · c+ (−(b · c)) = a · c− b · c

2

Remark 5 These calculation rules are fundamental and are used constantly when working with

rings. They show that despite the more abstract nature of rings compared to familiar number

systems, many familiar algebraic manipulations remain valid.

Example 42 In the ring Z/6Z, we can verify these properties:

� 2̄ · 0̄ = 0̄ (property 1)

� 2̄ · (−3̄) = 2̄ · 3̄ = 6̄ = 0̄ and −(2̄ · 3̄) = −0̄ = 0̄ (property 2)

� (−2̄) · (−3̄) = 2̄ · 3̄ = 6̄ = 0̄ (property 3)

4.4.1 Invertible Elements

Definition 4.15 Let R be a ring with unity 1 ̸= 0. An element a ∈ R is called invertible (or

a unit) if there exists b ∈ R such that:

a · b = b · a = 1

The element b is called the inverse of a and is denoted a−1.

Definition 4.16 The set of all invertible elements in a ring R is denoted by R× and forms a

group under multiplication, called the group of units.

Example 43 1. In Z, the only invertible elements are 1 and −1, so Z× = {±1}

2. In R, every nonzero element is invertible, so R× = R \ {0}

3. In Z/nZ, an element ā is invertible if and only if gcd(a, n) = 1
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4.4.2 Zero Divisors

Definition 4.17 Let R be a ring. A nonzero element a ∈ R is called a zero divisor if there

exists a nonzero element b ∈ R such that:

a · b = 0 or b · a = 0

Definition 4.18 A commutative ring with unity 1 ̸= 0 that has no zero divisors is called an

integral domain.

Example 44 1. Z, Q, R, C are integral domains (no zero divisors)

2. In Z/6Z, we have 2̄ · 3̄ = 0̄, so 2̄ and 3̄ are zero divisors

3. The ring of n× n matrices over a field has zero divisors when n > 1

Proposition 4.14 In an integral domain, the cancellation law holds: if a ̸= 0 and a · b = a · c,
then b = c.

Proof. Let R be an integral domain, and suppose a ̸= 0 and a · b = a · c for some b, c ∈ R.

Since a · b = a · c, we can rewrite this as:

a · b− a · c = 0

Using the distributive property:

a · (b− c) = 0

Now, since R is an integral domain, it has no zero divisors. We have a ̸= 0 and a · (b− c) = 0.

Therefore, by the definition of an integral domain (no zero divisors), we must have:

b− c = 0

which implies:

b = c

This proves the cancellation law: if a ̸= 0 and a · b = a · c, then b = c.

The same reasoning applies for right cancellation: if b · a = c · a with a ̸= 0, then:

(b− c) · a = 0 ⇒ b− c = 0 ⇒ b = c

This completes the proof. 2
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4.4.3 Ring Homomorphisms

Definition 4.19 Let R and S be rings. A function ϕ : R → S is called a ring homomor-

phism if for all a, b ∈ R:

1. ϕ(a+ b) = ϕ(a) + ϕ(b)

2. ϕ(a · b) = ϕ(a) · ϕ(b)

3. If R and S are rings with unity, we also require ϕ(1R) = 1S

Definition 4.20 Let ϕ : R → S be a ring homomorphism. The kernel of ϕ is:

ker(ϕ) = {a ∈ R : ϕ(a) = 0S}

The image of ϕ is:

Im(ϕ) = {ϕ(a) ∈ S : a ∈ R}

Proposition 4.15 Let ϕ : R → S be a ring homomorphism. Then:

1. ϕ(0R) = 0S

2. ϕ(−a) = −ϕ(a) for all a ∈ R

3. ker(ϕ) is a subring of R (in fact, an ideal)

4. Im(ϕ) is a subring of S

Proof. Let ϕ : R → S be a ring homomorphism.

1. For any a ∈ R, we have:

ϕ(a) = ϕ(a+ 0R) = ϕ(a) + ϕ(0R)

Adding −ϕ(a) to both sides:

ϕ(a) + (−ϕ(a)) = ϕ(a) + ϕ(0R) + (−ϕ(a))

0S = ϕ(0R)

Therefore, ϕ(0R) = 0S.
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2. For any a ∈ R, we have:

ϕ(a+ (−a)) = ϕ(0R) = 0S

But also:

ϕ(a+ (−a)) = ϕ(a) + ϕ(−a)

So:

ϕ(a) + ϕ(−a) = 0S

This means ϕ(−a) is the additive inverse of ϕ(a), so:

ϕ(−a) = −ϕ(a)

3. First, note that ker(ϕ) = {a ∈ R : ϕ(a) = 0S}.

� Non-empty: ϕ(0R) = 0S, so 0R ∈ ker(ϕ).

� Closed under subtraction: Let a, b ∈ ker(ϕ). Then:

ϕ(a− b) = ϕ(a)− ϕ(b) = 0S − 0S = 0S

So a− b ∈ ker(ϕ).

� Closed under multiplication: Let a, b ∈ ker(ϕ). Then:

ϕ(a · b) = ϕ(a) · ϕ(b) = 0S · 0S = 0S

So a · b ∈ ker(ϕ).

Thus ker(ϕ) is a subring. In fact, it’s an ideal because for any a ∈ ker(ϕ) and r ∈ R:

ϕ(a · r) = ϕ(a) · ϕ(r) = 0S · ϕ(r) = 0S

So a · r ∈ ker(ϕ), and similarly r · a ∈ ker(ϕ).

4. Im(ϕ) is a subring of S

Let Im(ϕ) = {ϕ(a) ∈ S : a ∈ R}.

� Non-empty: ϕ(0R) = 0S ∈ Im(ϕ).

� Closed under subtraction: Let ϕ(a), ϕ(b) ∈ Im(ϕ). Then:

ϕ(a)− ϕ(b) = ϕ(a− b) ∈ Im(ϕ)

� Closed under multiplication: Let ϕ(a), ϕ(b) ∈ Im(ϕ). Then:

ϕ(a) · ϕ(b) = ϕ(a · b) ∈ Im(ϕ)
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Thus Im(ϕ) is a subring of S.

2

Example 45 1. The map ϕ : Z → Z/nZ defined by ϕ(a) = ā is a ring homomorphism

2. The evaluation map ϕ : R[X] → R defined by ϕ(P ) = P (α) for fixed α ∈ R is a ring

homomorphism

3. The determinant map det :Mn(R) → R is not a ring homomorphism (it doesn’t preserve

addition)

4.4.4 Ideals

Definition 4.21 A subset I of a ring R is called an ideal if:

1. I is a subgroup of (R,+)

2. For all a ∈ I and r ∈ R, we have a · r ∈ I and r · a ∈ I (absorption property)

Definition 4.22 An ideal I of a ring R is called:

1. Proper if I ̸= R

2. Maximal if I is proper and there is no proper ideal J with I ⊊ J ⊊ R

3. Prime if for all a, b ∈ R, a · b ∈ I implies a ∈ I or b ∈ I

Example 46 1. In Z, the ideals are exactly the sets nZ = {nk : k ∈ Z}

2. The ideal pZ is prime (and maximal) if and only if p is prime

3. In any ring R, the sets {0} and R are ideals (trivial ideals)

Definition 4.23 A subring I of a ring R is called an ideal if:

∀a ∈ I, ∀r ∈ R, a× r ∈ I and r × a ∈ I

Proposition 4.16 Let I and J be subrings of R. Then:

1. I ∩ J is a subring of R

2. If I and J are ideals, then I + J = {a+ b | a ∈ I, b ∈ J} is a subring of R

3. If I and J are ideals, then I ∩ J and I + J are ideals
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Proof. Let I and J be subrings of R.

1. I ∩ J is a subring of R

� Non-empty: Since I and J are subrings, 0R ∈ I and 0R ∈ J , so 0R ∈ I ∩ J .
� Closed under subtraction: Let a, b ∈ I ∩ J . Then a, b ∈ I and a, b ∈ J . Since I

and J are subrings:

a− b ∈ I and a− b ∈ J

Therefore, a− b ∈ I ∩ J .
� Closed under multiplication: Let a, b ∈ I ∩ J . Then a, b ∈ I and a, b ∈ J . Since

I and J are subrings:

a · b ∈ I and a · b ∈ J

Therefore, a · b ∈ I ∩ J .

Thus I ∩ J satisfies the subring criteria.

2. If I and J are ideals, then I + J = {a+ b | a ∈ I, b ∈ J} is a subring of R

� Non-empty: 0R = 0R + 0R ∈ I + J since 0R ∈ I and 0R ∈ J .

� Closed under subtraction: Let x, y ∈ I + J . Then there exist a1, a2 ∈ I and

b1, b2 ∈ J such that:

x = a1 + b1, y = a2 + b2

Then:

x− y = (a1 + b1)− (a2 + b2) = (a1 − a2) + (b1 − b2)

Since I and J are subrings, a1 − a2 ∈ I and b1 − b2 ∈ J . Therefore, x− y ∈ I + J .

� Closed under multiplication: Let x, y ∈ I + J with x = a1 + b1, y = a2 + b2

where a1, a2 ∈ I and b1, b2 ∈ J . Then:

x · y = (a1 + b1) · (a2 + b2) = a1 · a2 + a1 · b2 + b1 · a2 + b1 · b2

Since I and J are ideals, then:

– a1 · b2 ∈ I (since b2 ∈ J ⊆ R and I is an ideal)

– b1 · a2 ∈ J (since a2 ∈ I ⊆ R and J is an ideal)

So we have:

x · y = a1 · a2︸ ︷︷ ︸
∈I

+ a1 · b2︸ ︷︷ ︸
∈I

+ b1 · a2︸ ︷︷ ︸
∈J

+ b1 · b2︸ ︷︷ ︸
∈J
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We can rewrite this as:

x · y = (a1 · a2 + a1 · b2)︸ ︷︷ ︸
∈I

+(b1 · a2 + b1 · b2)︸ ︷︷ ︸
∈J

∈ I + J

Therefore, I + J is closed under multiplication.

Thus I + J is a subring of R.

3. If I and J are ideals, then I ∩ J and I + J are ideals We’ve already shown I ∩ J
and I + J are subrings. Now we show they are ideals.

� I ∩ J is an ideal: Let a ∈ I ∩ J and r ∈ R. Since I and J are ideals:

a · r ∈ I and a · r ∈ J

So a · r ∈ I ∩ J . Similarly, r · a ∈ I ∩ J .
� I + J is an ideal: Let x ∈ I + J and r ∈ R. Write x = a + b with a ∈ I, b ∈ J .

Then:

x · r = (a+ b) · r = a · r + b · r

Since I and J are ideals, a · r ∈ I and b · r ∈ J . Therefore, x · r ∈ I + J . Similarly,

r · x ∈ I + J .

2

Example 47 1. In Z, the subring nZ is an ideal

2. In any ring R, {0} and R itself are ideals (trivial ideals)

3. In Z[x], the set of polynomials with even constant term is an ideal

Theorem 10 (First Isomorphism Theorem for Rings) Let ϕ : R → S be a ring homo-

morphism. Then:

R/ ker(ϕ) ∼= Im(ϕ)

4.5 Fields

Definition 4.24 A field is a commutative ring with unity 1 ̸= 0 in which every nonzero

element is invertible. That is:

1. (K,+) is an abelian group
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2. (K×, ·) is an abelian group, where K× = K \ {0}

3. Multiplication distributes over addition

Proposition 4.17 Every field is an integral domain.

Proof. Suppose a · b = 0 in a field K and a ̸= 0. Then a−1 exists, so:

b = 1 · b = (a−1 · a) · b = a−1 · (a · b) = a−1 · 0 = 0

Thus K has no zero divisors. 2

4.5.1 Finite Fields

Theorem 11 For every prime number p, the ring Z/pZ is a field, denoted Fp.

Proof. Let ā ∈ Z/pZ be nonzero. Then p ∤ a, so gcd(a, p) = 1. By BÃ©zout’s identity,

there exist integers x, y such that:

ax+ py = 1

Reducing modulo p gives ā · x̄ = 1̄, so ā is invertible. 2

Example 48 (The field F2 = Z/2Z)

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

This is the smallest field, with only 2 elements.

Example 49 (The field F3 = Z/3Z)

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Note that 2−1 = 2 since 2 · 2 = 4 ≡ 1 (mod 3).

Theorem 12 The number of elements in a finite field is always a prime power pn. For each

prime power, there exists essentially one field with that many elements, denoted Fpn.
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4.5.2 The Fields R and C
Definition 4.25 The field of real numbers R is a complete ordered field containing Q as a

subfield.

Definition 4.26 The field of complex numbers C is defined as:

C = {a+ bi : a, b ∈ R}

with operations:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i

Proposition 4.18 C is a field with:

1. Additive identity: 0 = 0 + 0i

2. Multiplicative identity: 1 = 1 + 0i

3. Additive inverse: −(a+ bi) = −a− bi

4. Multiplicative inverse: (a+ bi)−1 =
a− bi

a2 + b2
for a+ bi ̸= 0

Theorem 13 (Fundamental Theorem of Algebra) Every nonconstant polynomial with co-

efficients in C has at least one root in C.

Corollary 14 Every polynomial of degree n with coefficients in C factors completely into n

linear factors over C.

4.5.3 Field Characteristics

Definition 4.27 The characteristic of a field K, denoted char(K), is the smallest positive

integer n such that:

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0

If no such n exists, we say the field has characteristic 0.

Example 50 1. char(Q) = char(R) = char(C) = 0

2. char(Fp) = p for any prime p

3. char(Fpn) = p for any prime power pn

Theorem 15 The characteristic of a field is either 0 or a prime number.
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4.6 Exercises

Exercise 1: Let R be a ring. Prove that for all a, b ∈ R:

a) (−a) · (−b) = a · b
b) a · (b− c) = a · b− a · c

Solution.

1.

2. We prove (−a) · (−b) = a · b:

(−a) · (−b) = −[a · (−b)] (by Proposition 4.13(2))

= −[−(a · b)] (by Proposition 4.13(2))

= a · b (since −(−x) = x)

3. We prove a · (b− c) = a · b− a · c:

a · (b− c) = a · [b+ (−c)] (definition of subtraction)

= a · b+ a · (−c) (distributivity)

= a · b+ [−(a · c)] (by Proposition 4.13(2))

= a · b− a · c (definition of subtraction)

2

Exercise 2: Determine all invertible elements and zero divisors in Z/12Z.

Solution. The ring Z/12Z = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄, 9̄, 1̄0, 1̄1}.
Invertible elements: An element ā is invertible if and only if gcd(a, 12) = 1.

gcd(1, 12) = 1 ⇒ 1̄ is invertible

gcd(5, 12) = 1 ⇒ 5̄ is invertible

gcd(7, 12) = 1 ⇒ 7̄ is invertible

gcd(11, 12) = 1 ⇒ 1̄1 is invertible

Also, 1̄−1 = 1̄, 5̄−1 = 5̄ (since 5 × 5 = 25 ≡ 1 (mod 12)), 7̄−1 = 7̄ (since 7 × 7 = 49 ≡ 1

(mod 12)), 1̄1
−1

= 1̄1 (since 11× 11 = 121 ≡ 1 (mod 12)).
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Zero divisors: An element ā ̸= 0̄ is a zero divisor if there exists b̄ ̸= 0̄ such that ā · b̄ = 0̄.

2̄ · 6̄ = 1̄2 = 0̄ ⇒ 2̄, 6̄ are zero divisors

3̄ · 4̄ = 1̄2 = 0̄ ⇒ 3̄, 4̄ are zero divisors

4̄ · 3̄ = 1̄2 = 0̄ ⇒ 4̄, 3̄ are zero divisors

6̄ · 2̄ = 1̄2 = 0̄ ⇒ 6̄, 2̄ are zero divisors

8̄ · 3̄ = 2̄4 = 0̄ ⇒ 8̄, 3̄ are zero divisors

9̄ · 4̄ = 3̄6 = 0̄ ⇒ 9̄, 4̄ are zero divisors

1̄0 · 6̄ = 6̄0 = 0̄ ⇒ 1̄0, 6̄ are zero divisors

So the zero divisors are: 2̄, 3̄, 4̄, 6̄, 8̄, 9̄, 1̄0. 2

Exercise 3: Show that the set R = {a+ b
√
2 : a, b ∈ Z} forms a ring under usual addition and

multiplication. Is it a field?

Solution. To show R is a ring, we verify the ring axioms:

1. Closure under addition: (a+ b
√
2) + (c+ d

√
2) = (a+ c) + (b+ d)

√
2 ∈ R

2. Associativity of addition: Follows from associativity in R

3. Additive identity: 0 = 0 + 0
√
2 ∈ R

4. Additive inverses: −(a+ b
√
2) = (−a) + (−b)

√
2 ∈ R

5. Commutativity of addition: Follows from commutativity in R

6. Closure under multiplication: (a+ b
√
2)(c+ d

√
2) = (ac+ 2bd) + (ad+ bc)

√
2 ∈ R

7. Associativity of multiplication: Follows from associativity in R

8. Distributivity: Follows from distributivity in R

Thus R is a commutative ring with unity 1 = 1 + 0
√
2.

Is it a field? No, R is not a field. For example, 2 = 2 + 0
√
2 ∈ R but its multiplicative

inverse is 1
2
= 1

2
+ 0

√
2 /∈ R since 1

2
/∈ Z. 2

Exercise 4: Let ϕ : Z → Z/nZ be the canonical homomorphism. Describe ker(ϕ) and verify

the First Isomorphism Theorem.

Solution. The canonical homomorphism is defined by ϕ(a) = ā = a+ nZ.

University of Khemis Miliana 73 Algebra 1 Handout - Dr. Med HOUASNI



Exercises Chapter 4. Algebraic Structures

Kernel:

ker(ϕ) = {a ∈ Z : ϕ(a) = 0̄}
= {a ∈ Z : ā = 0̄}
= {a ∈ Z : a ≡ 0 (mod n)}
= {nk : k ∈ Z} = nZ

First Isomorphism Theorem verification: The theorem states that Z/ ker(ϕ) ∼= Im(ϕ).

We have:

� ker(ϕ) = nZ

� Im(ϕ) = Z/nZ (since ϕ is surjective)

� Z/ ker(ϕ) = Z/nZ

Thus Z/ ker(ϕ) = Z/nZ ∼= Im(ϕ) = Z/nZ, verifying the theorem. 2

Exercise 5: Prove that an ideal I in a commutative ring R is prime if and only if R/I is an

integral domain.

Solution. Let I be an ideal in a commutative ring R.

(⇒) Assume I is prime. We show R/I is an integral domain:

1. R/I is a commutative ring (since R is commutative)

2. R/I has unity 1̄ = 1 + I ̸= 0̄ (since I is proper)

3. Suppose (ā)(b̄) = 0̄ in R/I. This means ab + I = I, so ab ∈ I. Since I is prime, either

a ∈ I or b ∈ I, which means either ā = 0̄ or b̄ = 0̄. Thus R/I has no zero divisors.

(⇐) Assume R/I is an integral domain. We show I is prime: Suppose ab ∈ I. Then in R/I,

we have (ā)(b̄) = ab = 0̄. Since R/I is an integral domain (no zero divisors), either ā = 0̄ or

b̄ = 0̄, which means either a ∈ I or b ∈ I. Thus I is prime. 2

Exercise 6: Show that every finite integral domain is a field.

Solution. Let D be a finite integral domain with n elements: D = {0, a1, a2, . . . , an−1}.
To show D is a field, we need to show that every nonzero element has a multiplicative inverse.

Take any nonzero element a ∈ D. Consider the map fa : D → D defined by fa(x) = ax.

We show fa is injective: If fa(x) = fa(y), then ax = ay, so a(x − y) = 0. Since D is an

integral domain and a ̸= 0, we must have x− y = 0, so x = y.

Since D is finite and fa is injective, it must also be surjective. In particular, there exists

some x ∈ D such that fa(x) = ax = 1. This x is the multiplicative inverse of a.
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Since every nonzero element has an inverse, D is a field. 2

Exercise 7: Verify that Z/5Z is a field by constructing its multiplication table and showing

every nonzero element has an inverse.

Solution. The multiplication table for Z/5Z = {0̄, 1̄, 2̄, 3̄, 4̄} is:

× 0̄ 1̄ 2̄ 3̄ 4̄

0̄ 0̄ 0̄ 0̄ 0̄ 0̄

1̄ 0̄ 1̄ 2̄ 3̄ 4̄

2̄ 0̄ 2̄ 4̄ 1̄ 3̄

3̄ 0̄ 3̄ 1̄ 4̄ 2̄

4̄ 0̄ 4̄ 3̄ 2̄ 1̄

From the table, we can identify the inverses:

� 1̄−1 = 1̄ (since 1̄× 1̄ = 1̄)

� 2̄−1 = 3̄ (since 2̄× 3̄ = 6̄ = 1̄)

� 3̄−1 = 2̄ (since 3̄× 2̄ = 6̄ = 1̄)

� 4̄−1 = 4̄ (since 4̄× 4̄ = 1̄6 = 1̄)

Every nonzero element has a multiplicative inverse, so Z/5Z is a field. 2

Exercise 8: Prove that there is no field with exactly 6 elements.

Solution. Suppose, for contradiction, that there exists a field F with exactly 6 elements.

By Theorem 4.10, the characteristic of a field is either 0 or a prime number. Since F is finite,

its characteristic must be a prime p, and F contains Fp as a subfield.

By Theorem 4.7, the number of elements in a finite field is always a prime power pn. Since

6 = 2× 3 is not a prime power, there cannot be a field with exactly 6 elements.

More explicitly: If char(F ) = 2, then |F | would be 2n for some n, but 2n ̸= 6 for any

integer n. If char(F ) = 3, then |F | would be 3n for some n, but 3n ̸= 6 for any integer n. If

char(F ) = p > 3, then pn ≥ 5 > 6 for n ≥ 1.

Therefore, no field with exactly 6 elements can exist. 2

Exercise 9: Let K be a field of characteristic p > 0. Show that the Frobenius map ϕ : K → K

defined by ϕ(x) = xp is a field homomorphism.

Solution. We need to show that for all x, y ∈ K:

1. ϕ(x+ y) = ϕ(x) + ϕ(y)
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2. ϕ(xy) = ϕ(x)ϕ(y)

For (ii): ϕ(xy) = (xy)p = xpyp = ϕ(x)ϕ(y).

For (i): Using the binomial theorem:

(x+ y)p =

p∑
k=0

(
p

k

)
xkyp−k

For 0 < k < p, the binomial coefficient
(
p
k

)
= p!

k!(p−k)!
is divisible by p (since p is prime and

doesn’t divide k!(p− k)! for 0 < k < p). In a field of characteristic p, any multiple of p equals

0. Therefore:

(x+ y)p = xp + yp = ϕ(x) + ϕ(y)

Thus ϕ is a field homomorphism. 2

Exercise 10: Show that Q[
√
2] = {a+ b

√
2 : a, b ∈ Q} is a field.

Solution. We already know from Problem 3 that Q[
√
2] is a commutative ring with unity.

To show it’s a field, we need to show that every nonzero element has a multiplicative inverse.

Let a+ b
√
2 ∈ Q[

√
2] be nonzero. Then not both a and b are zero. Consider:

(a+ b
√
2)(a− b

√
2) = a2 − 2b2

We claim a2 − 2b2 ̸= 0. If a2 − 2b2 = 0, then either:

� If b = 0, then a2 = 0 ⇒ a = 0, contradicting that a+ b
√
2 is nonzero.

� If b ̸= 0, then
(
a
b

)2
= 2, so a

b
= ±

√
2, but

√
2 is irrational, while a

b
is rational, contradic-

tion.

Therefore, a2 − 2b2 ̸= 0, and we can define the inverse:

(a+ b
√
2)−1 =

a− b
√
2

a2 − 2b2
=

a

a2 − 2b2
+

−b
a2 − 2b2

√
2 ∈ Q[

√
2]

Since every nonzero element has a multiplicative inverse in Q[
√
2], it is a field. 2
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