CHAPTER 3

BINARY RELATIONS

This chapter introduces the fundamental concept of binary relations on sets, covering
their definition as subsets of Cartesian products and various representation methods (set, ma-
trix, and graph representations). It explores key properties including reflexivity, symmetry,
antisymmetry, and transitivity, leading to the study of two major types of relations: equiva-
lence relations and order relations.

For equivalence relations, the chapter develops the crucial concepts of equivalence classes,
quotient sets, and the canonical projection, demonstrating how equivalence relations par-
tition sets into disjoint classes.

For order relations, it covers partial orders, total orders, and their visual representation
through Hasse diagrams. The chapter also examines special elements in partially ordered
sets (maximal /minimal elements, maximum /minimum) and establishes important results about
their existence and uniqueness in finite posets.

The theoretical framework is complemented by numerous examples and exercises that illus-

trate applications across different mathematical contexts, providing a comprehensive foundation
for understanding relational structures in algebra.

3.1 Definitions and Basic Properties

3.1.1 Definition and Representations

Definition 3.1 Let E be a set. A binary relation R on E is a correspondence between

elements of E. We write xRy to mean that element x is related to element y.

Mathematical Definition: Formally, a binary relation R on E is a subset of the Cartesian
product £ x E. Thus:
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Chapter 3. Binary Relations

We say xRy if and only if (z,y) € R.
1. Let £ ={1,2,3,4}. The relation "is less than” is:

R = {(17 2)? (17 3)7 (17 4)7 (27 3)7 (274)7 (374)}
2. On Z, the relation ”is congruent to modulo 3” is:

R={(z,y) €ZxZ|xz=y (mod 3)}

3.1.2 Types of Representations

1. Set Representation: As shown above, by explicitly listing the pairs.
2. Matrix Representation: For finite sets, we can use a matrix M = (m;;) where:

mij = )
0 otherwise

3. Graph Representation: Represent elements as vertices and draw arrows from x to y

when xRy.

Example 27 Let E = {a,b,c} with R = {(a,b), (b, ¢), (c,a)}. Matriz representation (ordering:
a,b,c):

M=

_ o O
o = O

1
0
0
b,

Graph representation: A triangle with vertices a, b, ¢ and arrows a?b, b?c, c?a.

3.2 Properties of Binary Relations

3.2.1 Fundamental Properties

Definition 3.2 Let R be a binary relation on a set E.

R is reflexive if: Vo € E xRz

R is symmetric if: Vx,y € E, 2Ry = yRx

R is antisymmetric if: Vr,y € E, (tRy ANyRz) =z =1y
R is transitive if: Vr,y,z € E, (Ry ANyRz) = 2Rz

Example 28 1. On R, 7=" is reflexive, symmetric, antisymmetric, and transitive.
2. On R, 7<” is transitive and antisymmetric, but neither reflexive nor symmetric.

3. On any set, the empty relation is symmetric, antisymmetric, and transitive, but not reflexive.
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3.2.2 Special Types of Relations

Definition 3.3 o An equivalence relation is a relation that is reflexive, symmetric, and
transitive.

o A partial order is a relation that is reflexive, antisymmetric, and transitive.

o A total order is a partial order where every two elements are comparable: Vr,y € E, xRy V
YRz

Example 29 1. On Z, congruence modulo n is an equivalence relation.
2. OnR, 7="1s a total order.
3. On P(E) (power set), ”?” is a partial order but not necessarily total.

3.3 Equivalence Relations

3.3.1 Equivalence Classes

Definition 3.4 Let R be an equivalence relation on E. For x € FE, the equivalence class of
T 18:

[z] ={y € E| #Ry}

The set of all equivalence classes is called the quotient set and is denoted E/R.

Proposition 3.1 Let R be an equivalence relation on E. Then:
1. Vz € E,z € [z] (classes are non-empty)

2. [z] =y < 2Ry

3. [xlNyl #0 = [2] =[y]

4. The equivalence classes form a partition of £

Proof. Let R be an equivalence relation on E. We prove the four properties.

1. Classes are non-empty: Vo € E,z € [z].

Since R is reflexive, Vo € E, xRx. By the definition of an equivalence class, xRz means
precisely that x € [x]. Therefore, every equivalence class contains at least its representa-

tive, and is thus non-empty.

2. Equal classes condition: [z] = [y] <= zRy.

(=) Suppose [z] = [y]. From part (1), we know y € [y]. Therefore, y € [z], which by

definition means x'Ry.

(<) Suppose zRy. We will show [z] C [y] and [y] C [z].
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e Let z € [z]. This means 2Rz. We have xRy (by assumption) and, by symmetry,
yRx. Using transitivity on yRx and xRz, we get yRz. Therefore, z € [y|. This
proves [x] C [y].

e Let z € [y]. This means yRz. We have xRy (by assumption). Using transitivity on
2Ry and yRz, we get xRz. Therefore, z € [z]. This proves [y] C [z].

Since we have shown mutual inclusion, [z] = [y].

3. Non-empty intersection condition: [z]N[y] # 0 <~ [z] = [y].

(=) Suppose [z] N [y] # 0. Then there exists some z € E such that z € [z] and z € [y].
By definition, this means xRz and yRz. By symmetry of R, yRz implies zRy. Now, by
transitivity of R on 2Rz and 2Ry, we get 2Ry. From part (2), this implies [z] = [y].

(<) Suppose [z] = [y]. From part (1), € [z], so x € [y]. Therefore, x is an element in

[z] N [y], so the intersection is non-empty.

4. Equivalence classes form a partition of F.

A partition of F is a collection of non-empty, pairwise disjoint subsets whose union is F.
We verify these properties for the set of equivalence classes E/R = {[z] | z € E}.

e Non-empty: Each [z] is non-empty by part (1).
e Union is E: Every element « € E belongs to its own class [z], so e p/rl2] = E.

e Pairwise disjoint: Let [z] and [y] be two equivalence classes. Suppose they are not
disjoint, i.e., [x] N [y] # 0. Then by part (3), [x] = [y]. Therefore, any two distinct
classes (that are not equal) must be disjoint.

This completes the proof that the equivalence classes form a partition of E.

Example 30 On Z, consider congruence modulo 3:
0j={...,-6,-3,0,3,6,...}
j={..,-5-2,1,4,7,...}
2]={...,—4,-1,2,5,8,...}

These three classes partition Z, and 7] =3= {[0], [1],[2]}.
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3.3.2 Canonical Projection

Definition 3.5 Let R be an equivalence relation on E. The canonical projection is the
map:
7:FE—E/R, w(zr)=]|z]

This map is surjective and each element of the quotient set is the image of all elements in its

equivalence class.

3.4 Order Relations

3.4.1 Partial Orders

Definition 3.6 A partially ordered set (poset) is a pair (E,=) where < is a partial order
on E.

Example 31 1. (R, <) is a totally ordered set.
2. (P(E),C) is a poset but not necessarily totally ordered.
3. (N,|) (divisibility) is a poset.

3.4.2 Hasse Diagrams

For finite posets, we can represent them using Hasse diagrams:
e Draw elements as points

e If z <y and there’s no z with x < z < y (except x and y), draw y above x with a line

segment
e Omit arrows (direction is implied by vertical position)
e Omit reflexive and transitive edges

Example 32 For E = {1,2,3} with divisibility relation:
1 divides 2, 3
No relation between 2 and 3

The Hasse diagram has 1 at the bottom, with lines to 2 and 3 above it.

3.4.3 Special Elements in Posets

Definition 3.7 Let (E, <) be a poset and A C E.
m € F is a mazximal element if: Ve Em x=>m=x .

m € E is a maximum (or greatest element) if: Vo € E,x < m.
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m € E is a minimal element if: Vx € E,x <m =z =m.

m € E is a minimum (or least element) if: Yo € E,m < .

Proposition 3.2 In a finite poset, mazimal (minimal) elements always exist. A mazimum

(minimum), if it exists, is unique.

Proof. Let (E, =) be a finite poset. We prove the two statements.

1. In a finite poset, maximal (minimal) elements always exist.

We prove the statement for maximal elements; the proof for minimal elements is analo-

gous.

Let E = {x1,xs,...,2,} since F is finite. We construct a sequence to find a maximal

element.

Start with m; = x1. Consider xo. If m; < x5 and my # xs, then set my = x5. Otherwise,
keep my = my. Continue this process: for each xy, if m,_; < x, and my_1 # xy, then set

my = x; otherwise, set my = my_1.
After processing all elements, we obtain an element m = m,,. We claim m is maximal.

Suppose, for contradiction, that m is not maximal. Then there exists some y € E such
that m < y and m # y. But y is one of the elements z; in our finite list. When we
processed x; = y in our algorithm, we would have found that m,_; =< y and my_1 # y,
so we would have set my = y. Since m < y and y < m,, = m (by the construction, as we

only move to "greater” elements), by antisymmetry we get m = y, contradicting m # y.

Therefore, our assumption was false, and m must be maximal.

2. A maximum (minimum), if it exists, is unique.
We prove the statement for the maximum; the proof for the minimum is analogous.

Suppose m; and mqy are both maximum elements of F. By definition of maximum:

e Since m, is a maximum, Vo € E,x < m;. In particular, ms < my.

e Since mo is a maximum, Vo € E, x < msy. In particular, m; < ma.

Now we have m; < ms and ms < my. By the antisymmetry property of the partial order

=, this implies m; = ms.

Therefore, the maximum element, if it exists, is unique.
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3.5 Exercises

Exercise 1: Let R be a relation defined on R by:
TRy <= ?—y =z—y

1) Prove that R is an equivalence relation.
2) Determine the equivalence classe [z] for all x € R.
3) Determine the quotient set R/R.

Solution. Let R be a relation defined on R by:
TRy <= 2>~y =x—y
1. Proof that R is an equivalence relation:
e Reflexivity: For all x € R,
??—1*=0=2—2= Rz

So R is reflexive.

e Symmetry: Suppose xRy, i.e., 2> —y?> = v — y. Then:

y'—at=—("—y’)= (v —y)=y -z =>yRe

So R is symmetric.

e Transitivity: Suppose xRy and yRz. Then:

o —yt=r—y (1)

vy - =y—2 (2)
Adding (1) and (2):
P’ —2=(@m—-y) +@y—2)=r—2=2aRz

So R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

2. Equivalence class [z]:

We have:
2Ry <=2’ —y’ =1 —y = (z—y)(a +y) = (x —y)

= (rz—y(lr+y—1)=0<=az=y or y=1—=zx

Therefore, the equivalence class of x is:

2] = {z, 1 — =}
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3. Quotient set R/R:

The quotient set consists of all equivalence classes:
R/R={{x,1 -z} |z € R}

Note that [z] = [1 — 2] for all z € R, so each pair {z,1 — x} appears only once.

Exercise 2: Let R be a relation defined on Z x N* by:
(a,b)R(d,b") <= ab' = a'b

1) Prove that R is an equivalence relation.
2) Let (p,q) € Z x N* with p A ¢ = 1. Write its equivalence classe [(p, q)].

Solution. Let R be a relation defined on Z x N* by:
(a,b)R(a’, V) <= ab' = d'b
1. Proof that R is an equivalence relation:
e Reflexivity: For all (a,b) € Z x N*,
ab = ab = (a,b)R(a,b)

So R is reflexive.

e Symmetry: Suppose (a,b)R(a’,V'), i.e., ab/ = a’b. Then:
a'b=ab = (d,b')R(a,b)

So R is symmetric.

e Transitivity: Suppose (a,b)R(a’,b") and (a',b')R(a”,b"). Then:

ab =d'b (1)
Cle// — a//b/ (2)
Multiply (1) by ¢” and (2) by b:
ab/b// — a/bb/l
a/b”b — a//b/b
Since V' # 0, we can equate:
ab” = a"b = (a,b)R(a", V")

So R is transitive.
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Therefore, R is an equivalence relation.

2. Equivalence class [(p,q)] with p A ¢ = 1:

We have:
(a,b)R(p,q) <= aq = pb

Since p A ¢ = 1 (coprime), ¢ divides b and p divides a. Let b = kq, a = kp for some
k e N*.

Therefore:
[(p,q)] = {(kp, kq) | k € N"}

This represents all fractions equivalent to § in lowest terms.

Exercise 3: Let < be a relation defined on N? by:

a<a
(a,b) < (d',b) < or
a=a and b <¥

Prove that < is an order relation. Is it total or partial?

Solution. Let < be a relation defined on N? by:

a<dad

(a,b) < (d',b') <= < or

a=a and b <V
Proof that < is an order relation:
e Reflexivity: For all (a,b) € N*, a = a and b < b, so (a,b) < (a,b).

e Antisymmetry: Suppose (a,b) < (a/,b') and (a’,b") < (a,b).
If a < d’, then we cannot have a’ < a or a’ = a, contradiction. So we must have a = d’.
Then b < and &/ < b, so b=1"V". Thus (a,b) = (a, V).

e Transitivity: Suppose (a,b) < (a/,b') and (', V) < (a”,b").

— If a < d, then:
« If o <a”, then a < a” = (a,b) < (a”,b")
x If ' =a” and b’ <1, then a < d” = (a,b) < (a",1")

— Ifa=a" and b <V, then:
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x If o <a”, then a < a” = (a,b) < (a”,b")
« If ' =a” and b’ <V, then a = a” and b < b" = (a,b) < (a”,0")

So < is transitive.

Therefore, < is an order relation (lexicographic order).

Is it total or partial?

It is total: for any (a,b), (a/,b') € N2, either a < @/, or a > @/, or a = @’ and then either b < b/
orb>1"b. O

Exercise 4: On N*, we define a relation < by assuming that for all (k,1) € N* x N*:

k < | <= There exists n € N* such that [ = k"

1) Prove that < is a partial order relation.
2) We consider in the rest of the exercise that N* is ordered by the relation <. Let A =
{2,4,16}, determine the greatest element and the smallest element of A.

Solution. On N*, we define a relation < by:
k < | <= There exists n € N* such that [ = k"
1. Proof that < is a partial order relation:

e Reflexivity: Forall k e N*, k =kl = k < k.

e Antisymmetry: Suppose k < [ and [ < k. Then:
Il=k" and k=1[0" for some m,n € N*

Substituting: k= (k™))" =k™ = k™l =1=k=1lormn=1=>m=n=1.
Ifk=1thenl=1"=1=k Ifm=n=1, then | = k' = k. So in both cases,
k=1.

e Transitivity: Suppose k < [ and | < m. Then:
=k and m =17 for some p,q € N*
Then m = (kP)? = kP = k < m.

Therefore, < is a partial order relation.

2. For A ={2,4,16}:

e 2 < 4 since 4 =22
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e 2 < 16 since 16 = 24
e 4 < 16 since 16 = 42

So all elements are comparable.
Greatest element: 16 (since 2 < 16, 4 < 16, and 16 < 16)
Smallest element: 2 (since 2 < 2, 2 < 4, 2 < 16)

O
Exercise 5: Let E and F two sets and f : F — F a map. we define a relation R on E by
assuming that for all (z,2') € E? :

zRy' <= f(z) = f(2')

1) Prove that R is an equivalence relation.
2) Determine the equivalence classe [z] for all x € E.
3) Why the map:
E/R — F
[z]  — f(x)

is well defined? Show that it is injective.
Solution. Let E and F' be two sets and f : E — F a map. Define a relation R on E by:
vRa' <= f(x) = f(2')
1. Proof that R is an equivalence relation:

e Reflexivity: For all x € E, f(z) = f(x) = zRx
e Symmetry: If 2R/, then f(z) = f(2') = f(2') = f(z) = 2Rz

e Transitivity: If xRz’ and 2’Rz”, then f(z) = f(2') and f(2') = f(2") = f(z) =
f(z") = zRx"

So R is an equivalence relation.
2. Equivalence class [z]:
[l ={ye E| fly) = fla)} = FT'({f(@)})
The class of x is the fiber of f over f(x).

3. The map ¢: E/R — F,[z] — f(x) is well defined and injective:
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e Well defined: If [z] = [y], then 2Ry = f(z) = f(y), so ¢([z]) = f(z) = f(y) =
©([y]). The image does not depend on the representative.

e Injective: Suppose ¢([z]) = ¢([y]). Then f(x) = f(y) = xRy = [z] = [y].

Therefore, ¢ is a well-defined injective map.
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