CHAPTER 2

SETS AND APPLICATIONS

This chapter introduces fundamental concepts of sets and applications (Maps). It begins
with the definition of a set, inclusion, and equality of sets. Key operations on sets are defined:
difference, union, intersection, and symmetric difference, along with their properties (com-
mutativity, associativity, distributivity, idempotence, and De Morgan’s laws). The Cartesian
product of two sets is also presented.

The second part focuses on applications, defined as mappings that assign each element of a
starting set to a unique element in an arrival set. The concepts of direct image and inverse
image of a subset under a map are explained. Finally, the chapter defines and provides examples

of two crucial types of maps: surjective (onto) and injective (one-to-one) applications.

2.1 Notion of a Set and Properties

2.1.1 Set.

Definition 2.1 A set is a collection of mathematical objects (elements) gathered according to
one or more common properties. These properties are sufficient to affirm that an object belongs

or does not belong to a set.

Example 18 (1) E: the set of students at USTO university. (2) We denote by N the set of
natural numbers N = {0,1,2,3,...}. (3) The set of even numbers is denoted: P = {x €
N/2 divides x}. (4) The empty set is denoted: O which contains no elements.

20



Notion of a Set and Propert. \asaly Chapter 2. Sets and Applications

2.1.2 Inclusion.

We say that the set A is included in a set B when all the elements of A belong to B and we
note A C B,
ACB«& (Vo,(re A=x € B)).

The negation:
A¢ B (3z,(x e ANz ¢ B)).

Example 19 (1) We denote R the set of real numbers, we have: N C R.
(2) We denote 7 the set of relative integers, Q the set of rationals, we have: N C Z C Q C R.

2.1.3 Equality of Two Sets:

Let A, B be two sets. Knowing A = B means that:
A=B< ((ACB)and (B CA)).
2.1.4 Difference of Two Sets:
The difference of two sets A, B is the set of elements of A that are not in B, denoted A — B.
A—B={x/r € ANz ¢ B}.
If AC B then B — A is also called the complement of A in B, it is denoted C5, A°
Ca={x/rc BNz ¢ A}

2.1.5 Cardinal of a Set.

We call cardinal of a set A the number of its elements, denoted by Card(A), if the cardinal of

A is finite, we say that A is finite, otherwise we say that it is infinite.

2.1.6 Operations on Sets.
Union.

The union of two sets A and B is the set of elements that belong to A or B, we write AU B.
r€e AUB & (r€ AV e B).

The negation:
r¢ AUB s (¢ ANz ¢ B).
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Intersection.

The intersection of two sets A, B is the set of elements that belong to A and B, denoted AN B.
reANB& (re ANz € B).

The negation:

r¢ ANB &S (r ¢ AV ¢ B).
Remark 3 (1) If A, B have no elements in common, they are said to be disjoint, then ANB =
0. (2) B=Cps AUB=Eand ANB=0. (3) A—B=AnN B

Symmetric Difference.

Let E be a non-empty set and A, B C E, the symmetric difference between two sets A, B is
the set of elements that belong to A — B or B — A, denoted AAB.

AAB = (A-B)U(B-A)=(ANCE)U(BNCH) =(AUB)—(ANB).
r € AABe {z/re(A-B)Vaze(B-A)}.

2.1.7 Properties of Operations on Sets.
Commutativity.

For any two sets A, B:
ANB=BNAAUB=BUA.

Associativity.
For any three sets A, B, C"
AN(BNC)=(ANnB)NC,Au(BUC)=(AUB)UC.
Distributivity.
For any three sets A, B, C":
AUu(BNC)=(AUuB)N(AUC),AN(BUC)=(ANB)U(ANCQC).

Idempotence.

AUA=AANA=A.
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De Morgan’s Laws.
a) (AU B)° = A°n B
b) (AN B)¢ = A°U B*.

Proof. Let us show that (AU B)¢ C A°N B¢ and A°N B C (AU B)¢,
(AU B)¢ C A°N B

Letz € (AUB)=2¢ (AUB)=ac¢ ANx ¢ B=>x€ ANz € B¢
thus x € (AU B)® = x € (A°N B°), hence (AU B)® C (A°N B°).
A°NB°C (AUB)“:

Let x € (A°NB°) = 2 € ANz € B =2 ¢ ANz ¢ B= x ¢ (AU B), hence
A°NB° C (AU B)°, thus (AU B)¢ = A°N B°. We follow the same reasoning for the second
relation. O

2.1.8 Power Set P(A).

Let A be a set of card(A) = n, the power set of A is the set denoted by P(A) which contains
the empty set and the set A itself and the all parts possible of A. We write

P(A) = {0, X; X C A},

and we have: Card(P(A)) = 2".

2.1.9 Cartesian Product.

Let A, B be two sets, a € A,b € B. We note A x B ={(a,b),a € A,;b € B}. The set A x B is
the set of ordered pairs (a,b); it is called the Cartesian product of the sets A and B.

Proposition 2.1 If A and B are finite sets and if we denote by:
Card(A): the number of elements of A.
Card(B): the number of elements of B. we will have:

Card(A x B) = Card(A) x Card(B).

Example 20 a) Let E ={1,2,3,4,5,6,7,8}, A ={1,2,3,4,5,6}, B=1{2,4,6,8}

(1) AC E,B C E. A is not included in B because 1 € AN1 ¢ B.

B is not included in A because 8 € B8 ¢ A.

(2) ANB ={2,4,6},AUB = {1,2,3,4,5,6,8}.

(3) A— B=1{1,3,5},B— A={8}.

(4) AAB ={1,3,5,8}

(5) P(B) = {0, B, {2}, {4}, {6}, {8}, {2,4},{2,6},{2,8},{4,6},{4,8},{6,8},{2,4,6},{2,6,8},
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{4,6,8},{2,4,8}}.
We have Card(P(B))=2* = 16.
b) A={1,2},B=1{1,23)
Ax B = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}
BxA = {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}

2.2 Applications (Maps)

2.2.1 Application (Map).

Definition 2.2 We call an application (or map) from a set E to a set F' a law of correspondence
(or a relation of correspondence) allowing us to associate to every x € E a unique element

y € F. E is the starting set and F is the arrival set. The element y associated to x is the image
of x by f, we note x — y/y = f(x).

Example 21 Consider the following application:
(1) fi : N+— N, n+——4n + 2.
(2) fo: R— R, x — 5z + 3.

2.2.2 Direct Image and Inverse Image.

a) Direct Image. Let f: E—— F and A C E, we call the image of A by f a subset of F,
denoted f(A), such that

f(A) ={f(x) € F/x € A},

knowing that f(A) C F, and that A, f(A) are sets.
b) Inverse Image. Let f: E +—— F and B C F, we call the inverse image of B by f, the
part of E denoted f~'(B), such that

fU(B)={x € E/f(z) € B},

knowing that f~!(B) C E, and that B, f~!(B) are sets.

Example 22 (1) Let f be the application defined by:

f:00,3] — [0,4]z — f(x) =2z +1
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Find f([0,1])?
F0,1]) ={f(2)/x € [0,1]} = {22+ 1/0 <z <1},
we have: 0 <2 <1=0<2r<2=1<2r+1<3, then f([0,1]) = [1,3] C [0,4].
(2) Let [ be the application defined by:
g:10,2] — [0,4]z — f(z) = (22 — 1)
Calculate f~1({0}), £71((0,1)).

{0} = {z€10,2)/f(x) € {0}} = {z €[0,2]/(x) = 0}

= {re0,2/(2e-1)* =0} = {%}

F7H0,1)) = {z€[0,2]/f(x) € (0,1)} = {x €[0,2]/0 < (22 — 1)* < 1},
We have : (2x —1)? > 0 is verified Vo € R — {%} ,x € [0,2]. On the other hand

2r—17° < I=2r-1l<l=>-1<2r-1<1=0<z<]1,

and therefore x € (0,1), by combining the two inequalities, we obtain

P - (b b () ()

2.2.3 Restriction of an applications.

Let f: E — F a map, the restriction of f is a new map denoted by f/A, obtained by choosing
a smaller domain (A C FE) for the original map f . The map f is then said to extend f/A.

Example 23 Let f: R+—— R defined by x — f(x) = bz + 3. Then
f/[-6,8] : [<6,8] — R, x> f/[—6,8](z) = f(x) = 5z + 3.

2.2.4 Surjection.

Definition 2.3 The image f(E) of E by f is a subset of F'. If every element of F' is the image
by f of at least one element of E, we say that f is a surjective application from E into F', we
have: f(E) = F. f is surjective < Yy € F,3x € E/f(x) =y.

Example 24 Are the following applications surjective?
(1) fi : N+— N, n— 4n + 2.

f1 is not surjective; indeed, if we assume it is surjective, that is to say

-2
VyeNIneN/n+2=y=n= ?JT
but n = yTIQ ¢ N for many y (e.g., y=1), contradiction. f; is not surjective.
(2) fo:R+— R z+— 5z + 3.
3

f2 is surjective because: Vy € R,3r e R/Sr +3 =y =1 =3> € R.
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2.2.5 Injection.

Definition 2.4 When two distinct elements of E correspond via f to two different images in

F, f is said to be an injective application, we then have:

(f is injective ) < (Yo, 79 € B, 11 # 13 = [ (11) # f (12)),

or
(f is injective ) = (V1,20 € E, f (x1) = f (22) = 1 = x9) .

Example 25 Are the following applications injective?

(1) f: N+— N, n+—— 4n+ 2.
f is injective because: Vni,ne € N, f (ny) = f(nay) = 4ny +2 = 4ny + 2 = 4ny = 4ny =

ny = ny.

2.2.6 Bijective

Definition 2.5 A map f : E — F s called bijective if it is both injective and surjective. This
definition combines the two previous properties:

Injective: Every element in F' is the image of at most one element in E. (No two different
elements in E have the same image in F).

Surjective: Every element in F is the image of at least one element in E. (The map
“covers” all of F).

Therefore, a map is bijective if and only if:
Vye F, 3z e E such that f(x) =y.

This means that for every element y € F', there exists one and only one element x € E such
that f(z) = y. A bijective map establishes a perfect ”pairing” or ”one-to-one correspondence”

between the elements of the set £ and the elements of the set F'.
Example 26 Determine if the following functions are bijective.

1. fi: R — R defined by fi(z) = 2x + 3.

Solution:

e Injective? Suppose fi(x1) = fi(x2). Then 22143 = 2x9+3, which implies 221 = 2xs,

SO r1 = Xo. Yes, it is injective.

e Surjective? For any y € R, we solve y = 2z + 3 for x: =z = y%‘; € R. Yes, it is

surjective.
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Since f; is both injective and surjective, it is bijective.

2. fo: N — N defined by fo(n) =n+ 1.
Solution:
e [njective? Suppose fo(ni) = fa(nz). Then ny + 1 = ny + 1, so ny = ng. Yes, it is
injective.
o Surjective? Let y = 0 € N. Is there an n € N such that n +1 = 0?7 No, because
n = —1 ¢ N. Therefore, f; is not surjective, and hence not bijective.
3. f3:R — R defined by f3(x) = 22
Solution:
o Injective? We have f3(1) = 1 and f3(—1) = 1. Different inputs give the same
output. So, it is not injective.
o Surjective? Let y = —1 € R. Is there an # € R such that 22 = —1? No. So, it is

also not surjective. Therefore, f3 is not bijective.

4. fy: RT — RT defined by f4(x) = 22, where RY is the set of non-negative real numbers.

Solution:

o Injective? For xy,xo > 0, if 22 = 22, then 11 = z5. Yes, it is injective.

o Surjective? For any y > 0, we have z = \/y > 0 and f4(\/y) = y. Yes, it is

surjective.

Therefore, f; is bijective. This example shows how restricting the domain and codomain

can change the properties of a function.

2.2.7 Composition of Maps

Definition 2.6 Let E, F,G be three sets. Let f : E — F and g : F — G be two maps. The
composition of f and g is the map denoted go f (read “g round f”) from E to G, defined by:

VeeE, (gof)(z)=g(f(r)).
The element x is first mapped to f(x) in F, and then f(x) is mapped to g(f(zx)) in G.

Remark 4 The composition g o f is only defined if the arrival set of f is the same as the
starting set of g. The order of operations is important: g o f means “apply f first, then g”.
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Example 1.8 Let f : R — R defined by f(x) =x + 1, and g : R — R defined by g(z) = 2.
~(go ) =g(f(2)) =gl +1) = (x+1)* - (fog)(x) = flg(x)) = f(2*) =2 + L.

We see that in general, g o f # f o g. Composition of maps is not commutative.
Proposition 2.2 (Associativity of Composition) Let [ : E — F, g : FF — G, and
h:G — H be maps. Then:

ho(gof)=(hog)of.
This map from E to H is simply denoted ho go f.

Proof. For any z € E:
(ho(go f))(x)="h((ge f)(x)) = h(g(f(x)))
((hog)o f)(z) = (hog)(f(z)) = h(g(f(z)))

The results are identical, so the maps are equal. O

2.2.8 Reciprocal Map (Inverse Map)

Definition 2.7 A map f : E — F is called bigective if it is both injective and surjective.

This means that for every element y € F, there exists exactly one element x € E such that

flz)=y.

Definition 2.8 Let f : E — F be a bijective map. The reciprocal (or inverse) map of f,
denoted f~': F — E, is the map that associates to each y € F the unique element x € E for
which f(x) =vy. In other words:

VyeF, [fly)=z << flx)=y.

Warning: The notation f~! in this context refers to the inverse map, which is different from

the inverse image of a set f~!'(B). The inverse map only exists when f is bijective.

Proposition 2.3 (Characterization of the Inverse) Let f : E — F be a bijective map.
Its inverse f~' : F — E satisfies the following properties:

1. f~Yo f = 1Idg, where Idg is the identity map on E (Idg(x) = x).

2. fo f~' = Idp, where Idp is the identity map on F (Idp(y) =y).

Conversely, if there exists a map g : F' — E such that go f = Idg and f o g = Idp, then f is
bijective and g = 1.

1. Let f: R — R defined by f(x) = 3x — 5. This function is bijective. Let’s find its inverse.

y+5

Let y = 3z — 5. We solve for x: = = %5 Therefore, the inverse function is f~!(y) = 3

We verify: (f~'o f)(z) = f1(3z—5) = w =z
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2. The function g : R™ — R* defined by g(z) = z? is bijective (from the non-negative reals

to the non-negative reals). Its inverse is the square root function: g=1(z) = /.

Proposition 2.4 (Inverse of a Composition) Let f : E — F and g : F' — G be bijective

maps. Then the composition g o f s bijective, and its inverse is given by:

(gof)y ™ =f"og"

Proof. We check the characteristic property using associativity:

(fogolgo)=F"olg og)of=Ff"oldpof=f"of=1Idp.

Similarly, (go f)o (f~'og™') = Idg. Therefore, f~' o g~! is the inverse of g o f. O

2.3 Exercises

Exercise 1: Assuming the set A = {w,z,y,2}, B = {z,y}, C = {z,y,2z} and D = {z, 2}
three parts of A. Identify the elements in each set: B¢, C¢, B\C,B\D,BNC,BND,BN(CU
D),(BNC)UD,B\D,D\B,B x C,C x B,B x D, P(B) and P(C).

Solution.  Given;
A=A{w,z,y,z}, B=A{ry}, C={zyz2}, D={xz}
o B°= A\ B = {w,z}
o C¢=A\C = {w)
« B\C =10
e B\D={y}
e BNC = {xz,y}
e BND = {zx}
e BN(CUD)=Bn{x,y,z} ={z,y}
¢ (BNCOYUD = {z,y} U{z, 2} = {z,y,2}
e D\ B={z}

BxC={(z,z),(z,9), (x,2),(y,2), (¥,9), (y,2) }
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o Ox B={(z,2),(x,9), (y,2), (y,9), (2,2), (2,9)}

o BxD={(zx)(z,2),(y,2), (y,2)}

o P(B) ={0.{z}, {y}. {z,y}}

o P(C) ={0.{=} . {v} {z} {z, v} {2, 2} {y, 2} {z,y, 23}

Exercise 2: Let A, B and C be three parts of a set E. Prove that:
1) AU(BNC)=(AUuB)N(AUC(C)
2) AN(BUC)=(ANB)U(ANC)

Solution. Let A, B and C be three subsets of a set E.

1. Prove that AU(BNC)=(AUB)N(AUC)
Let z € AU(BNC). Thenz € Aorx e BNC.

e lfre A thenxe AUBandz e AUC,sox e (AUB)N(AUC).

elfz € BNC, thenx € Band x € C, sox € AUB and x € AU C, hence
re(AUB)N(AUC).

Thus AU(BNC)C (AUB)N(AUC().
Now let z € (AUB)N(AUC). Thenz € AUB and x € AUC.

o Ifze A thenzxe AU(BNCO).

e If z ¢ A, then from x € AU B we get x € B, and from x € AUC we get z € C. So
x € BNC, hence x € AU (BNC).

Thus (AUB)N(AUC) C AU (BNCQO).
Therefore, AU(BNC)=(AUB)N(AUC).

2. Prove that AN (BUC)=(ANB)U(ANC)
Let z € AN(BUC). Thenx € Aand x € BUC.

e Ifx € B, thenx e ANB.
e Ifze(C,thenx e ANC.

Soxe (ANB)U(ANC). Nowlet x € (ANB)U(ANCQC).

e lfre ANB,thenz e Aande € BCBUC,soxe AN(BUC).
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e lfrcANC,thenz e Aande e CC BUC, sox € AN(BUCQ).

Therefore, AN (BUC)=(ANB)U(ANC).

Exercise 3: Let E be a set and A and B two parts of E/. Assume that:

ANB#0, AUB#FE, AZ Band B ¢ A.

Suppose that: Ay = AN B, Ay = AN B¢, A3 = BNA°, Ay =(AUB)".
1) Prove that A;, As, A3 and A4 are not emply.

2) Prove that Ay, Az, A3 and A, are two by two disjoint.

3) Prove that AjU Ay U A3 U A, =E.

Solution. Let E be a set and A and B two subsets of E such that:

ANB#(, AUB+#FE, A¢ Band B¢ A.

Define: Ay =ANB, Ay,=ANB¢, A3=BnNA° A;=(AUB)".
1. Prove that Ay, Ay, A3 and A, are not empty.

e A; = AN B # () by hypothesis.

o Ay = AN B # () because A € B.

e A3 = BN A° # () because B € A.

o Ay =(AUB)®# () because AUB # E.

2. Prove that A, Ay, A3 and A, are pairwise disjoint.

e AANAy=(ANB)N(ANBY)=ANBNB =10
e AANA3=(ANB)N(BNA)=ANA°NB =1
e AANA,=(ANB)N(AUB)*=(ANB)N(A°NB) =10
e AyNA3=(ANB)N(BNA°) =1
o HLNA,=(ANB)N(AUB)*= (AN B°) N (A°N B°)
( N

= ( —
o AsNAy= (BN A = ( =0

(AUB) = (BN A°) N (A°N B°)

3. Prove that A; UA, U A3 U A, = F.

Let x € E. There are four mutually exclusive cases:

e € Aand x € B: then z € A;
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e € Aand z ¢ B: then z € Ay
o v ¢ Aand z € B: then z € A;
o v ¢ Aand x ¢ B: then z € Ay

Thus every element of E belongs to exactly one of the four sets.

Exercise 4: Let A, B and C be three parts of a set E.
1) What do you think about the implication: (AUB ¢ C) = (AZ C or B Z C)?
2) Suppose that we have AUB C AUC and AN B C ANC. Prove that B C C.

Solution. Let A, B and C be three subsets of a set F.

1. The implication (AUB Z C) = (AZ C or B Z C) is true.

If AUB ¢ C, then there exists © € AU B such that x ¢ C. Since x € AU B, we have
reAorxeB.

o Ifxrec A then AZC.
e If x € B, then B Z C.
So in either case, A Z C' or B € C.
2. Suppose AUB C AUC and ANB C ANC'. Prove that B C C.

Let £ € B. We consider two cases:

e lfre A thenx e ANBCANC,soxeC.
o Ifx ¢ A thenze BC AUB C AUC. Since x ¢ A, we must have z € C.

In both cases, x € C. Therefore, B C C.

Exercise 5: Let E a set and A and B two parts of E. Demonstrate that:
1) FCG<+<= FUG=G.
Q) FC G+ FNG =0.

Solution. Let E be a set and F' and G two subsets of E.
1. Prove that F  C G <— FUG =G.

(=) If F C G, then FUG =G.
(<) If FUG =G, then for any x € F, we have x € FUG =G, s0o F C G.
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2. Prove that F C G <— FNG°=0.
(=) If F C G, then no element of F is in G¢, so F NG = ().
(<) If F N G° =, then no element of F is outside G, so F C G.

Exercise 6: Let f: [ — J the function defined by f(x) = 2.
1) Give sets I and J such that f will be injective but not surjective.
2) Give sets I and J such that f will be surjective but not injective.
3) Give sets I and J such that f will be neither injective nor surjective.
4) Give sets I and J such that f will be injective and surjective.

Solution. Let f: I — J be defined by f(z) = 2.
1. Injective but not surjective: I =N, J =N
2. Surjective but not injective: I =R, J = R™
3. Neither injective nor surjective: I =R, J =R

4. Bijective: [ =R",J=R"

Exercise 7: We consider the map f : N — N defined by: for all n € N, f(n) = n?
1) Is it exist a map g : N — N such that f o g = Idy?
2) Is it exist a map h : N — N such that ho f = [dy?

Solution.  Consider f: N — N defined by f(n) = n%

1. Does there exist g : N — N such that fog = Idy?

No, because f is not surjective (e.g., 2 has no preimage).

2. Does there exist h : N — N such that ho f = Idy?

Yes, define h(n) = y/n if n is a perfect square, and h(n) = 0 otherwise.

O
Exercise 8: Let £ and F two sets and a map f : E — F. Let A and B two parts of E.
Demonstrate that:
1) fLAUB) = f(A) U f(B).
2) f(ANB) C f(A)N f(B).
Give an example for the second property. Then prove that f is injective iff for any parts A and
B of E, we have f(AN B) = f(A) N f(B).

Solution. Let f: F — F,and A,B C E.
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1. Prove that f(AUB) = f(A) U f(B).
(Q)Ify e f(AUB), then 3z € AU B with f(z) =y. lf z € A, then y € f(A); if z € B,
then y € f(B). Soy € f(A)U f(B).
(D) Ify € f(A)U f(B), then y € f(A) or y € f(B). If y € f(A), then Iz € A with
flx)=y,sox € AUB and y € f(AU B). Similarly if y € f(B).
2. Prove that f(ANB) C f(A)N f(B).
If y € f(AN B), then 3z € AN B with f(z) = y. Since x € A and € B, we have
y € f(A) and y € f(B), soy € f(A)N f(B).
Example where equality fails: Let f: R — R, f(z) = 2*, A =[-1,0], B =[0,1]. Then
ANB = {0}, so f(AN B) = {0}, but f(A) = [0,1], f(B) = [0,1], so f(A)N f(B) = [0,1].
3. Prove that f is injective <= for any A, B C E, f(AN B) = f(A)N f(B).

(=) If f is injective, we already have f(ANB) C f(A)N f(B). For the reverse inclusion:
if y € f(A) N f(B), then Ja € A with f(a) = y and 3b € B with f(b) = y. Since f is
injective, a = b, so a € AN B and y € f(AN B).

(<) Suppose f(ANB) = f(A)Nf(B) forall A, B C E. Let x1, 25 € E with f(z1) = f(22).
Take A = {x1}, B = {x2}. Then f(ANB) = f(A)N f(B). If x1 # xo, then AN B =0,
so f(ANB) =0, but f(A)N f(B) ={f(z1)} # 0. Contradiction. So z; = z2, and f is

injective.

Exercise 9: 1) Let f the map of {1,2,3,4} in it self defined by: f(1) =4, f(2) =1, f(3) =2

and f(4) =
Determine f~!'(A) when A = {2}, A= {1,2} and A = {3}.

2) Let f the map of R in R defined by: f(x) = x2. Determine f~'(A) when A = {1} and
A=11,2].

Solution.

1. f:{1,2,3,4} — {1,2,3,4} with f(1) =4, f(2) =1, f(3) =2, f(4) =2

({2h) ={3.4}
“({L2}) ={2,3,4}
({3 =

2. f:R— R with f(z) = 2?
{1 ={-11}
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o fH[L2]) =
(Il
Exercise 10: 1) Let f : R*> — R defined by: f(x,y) = x. Determine f([0,1] x [0,1]) and
fFH(=1,1]).

2) Let g : R — [—1, 1] defined by: g(z) = cos(mz). Determine ¢g(N), g(2N) and g~ ({—1,1}).
Solution.

1. f:R* - R with f(z,y) ==

i f([ov 1] X [07 1]) = [07 1]
e [A([-1,1)=][-1,1] xR

2. g: R — [-1,1] with g(z) = cos(mx)

e g(N) ={cos(mn):n e N} ={(-1)":ne N} ={-1,1}
e g(2N) = {cos(2mn) : n € N} = {1}
e g '((-1,1) ={z €R:cos(mz) € (-1,1)} =R\ Z

O
Exercise 11: Let F and F two sets and amap f : E — F. Let C' and D two parts not emply
of F. Demonstrate that:
1) f7H(CuD)=fHC)u fHD).
2) f7H(CND)=fHC)Nn YD)

Solution. Let f: F — F,and C,D C F.

1. Prove that f~'(CUD) = f~1(C)u f~4(D).
re ff{(CUD) ()EC’UD<:>f()ECorf(x)ED
<~ re fY(C)orze YD) — ze fHC)UfYD).

2. Prove that f~Y(C'N D)= fYC)n f~1(D).

re f{(CND) < f(z)eCND < f(z)eCand f(z) €D
< re fY(C)and z € fY(D) — z e f7HC)n fYD).

Exercise 12: Let F and F' two sets and a map f: EF — F.
1) Prove that for any part A of E we have : A C f~1(f(A)).
2) Prove that for any parts B of E we have : f(f~'(B)) C B.
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3) Prove that f is injective iff for any part A of E we have : A = f~1(f(A)).
4) Prove that f is surjective iff for any part B of E we have : f(f~'(B)) = B.

Solution. Let f: EF — F.
1. Prove that for any A C E, A C f~(f(4)).
If z € A, then f(z) € f(A),soz € f1(f(A)).
2. Prove that for any B C F, f(f~'(B)) C B.

Ify € f(f~YB)), then 3z € f~1(B) with f(x) = y. Since z € f~*(B), we have f(z) € B,
soy € B.

3. Prove that f is injective <= for any A C E, A= f~1(f(A)).

(=) If f is injective, we already have A C f~!(f(A)). For the reverse: if x € f~(f(A)),
then f(x) € f(A), so Ja € A with f(a) = f(z). Since f is injective, x = a € A.

(<) Suppose A = f71(f(A)) for all A C E. Let z1,20 € E with f(z1) = f(x2).
Take A = {z1}. Then f~'(f(A)) = f~'({f(z1)}). Since f(z2) = f(x1), we have zo €
FHf(A) = A= {x}, so zo = x;. Thus f is injective.

4. Prove that f is surjective <= for any B C F, f(f~'(B)) = B.

(=) If f is surjective, we already have f(f~'(B)) C B. For the reverse: if y € B, then
since f is surjective, 3z € E with f(z) =y. Thenz € f~1(B) and y = f(z) € f(f~1(B)).

(<) Suppose f(f~'(B)) = B for all B C F. Take B = F. Then f(f~!(F)) = F. But
f7YF)=FE, so f(F) = F, meaning f is surjective.

Exercise 13: 1) Let ¢; € N_yo13 and ¢o € N_gg13. Prove that:
1 1 1 1

2 ¢ ¢ 2
2) Let f:Z x N_{o1; — Q the map defined by: f(p,q) =p+ é.
a) Prove that f is injective.
b) Is f surjective?

Solution.

1. Let g1,¢q2 € N\ {0,1}. Prove that:

1<1 1<1
2 @1 g 2

Since ¢q1,q2 > 2, we have 0 < qil, qig < % The maximum of qil — q% occurs when ¢; = 2
and go — 00, giving % —-0= % The minimum occurs when ¢ — oo and ¢ = 2, giving

0— % = —%. Since q1, g2 are integers > 2, the difference cannot actually equal j:%.
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2. Let f:7Z x (N\ {0,1}) — Q defined by f(p,q) :p+$.

(a) Prove that f is injective.
Suppose f(p1,q1) = f(p2, @2), i-e., pr+ - = p2 + .- Then p; —py = - — . The
left side is an integer, and from part (1), the right side satisfies —% < Lz — qu < %

11

The only integer in (—3, 3) is 0, so p; = p, and qil = qiz, hence ¢; = ¢s.

(b) Is f surjective?

No, f is not surjective. For example, % is not in the image because: If p 4 % = %,

then p = % — é. For ¢ > 2, % — 5 is not an integer.

University of Khemis Miliana 37 Algebra 1 Handout - Dr. M°* HOUASNI



	1 Logic and Methods of Reasoning
	1.1 Rules of Formal Logic
	1.2 Negation: notP,  or P :
	1.3 Logical Connectors.
	1.4 Implication
	1.5 Converse of an Implication
	1.6 Equivalence
	1.7 Negation of an Implication
	1.8 Conclusion
	1.9 Properties of Logical Connectors
	1.10 Quantifiers
	1.10.1 Universal quantifier 
	1.10.2 Existential Quantifier 
	1.10.3 Uniqueness Quantifier !
	1.10.4 Negation of Quantifiers:

	1.11 Methods of Reasoning
	1.11.1 Direct Reasoning
	1.11.2 Reasoning by Contraposition
	1.11.3 Reasoning by Contradiction (Absurdity)
	1.11.4 Reasoning by Recurrence

	1.12 Exercises

	2 Sets and Applications
	2.1 Notion of a Set and Properties
	2.1.1 Set.
	2.1.2 Inclusion.
	2.1.3 Equality of Two Sets:
	2.1.4 Difference of Two Sets:
	2.1.5 Cardinal of a Set.
	2.1.6 Operations on Sets.
	2.1.7 Properties of Operations on Sets.
	2.1.8 Power Set P(A).
	2.1.9 Cartesian Product.

	2.2 Applications (Maps)
	2.2.1 Application (Map).
	2.2.2 Direct Image and Inverse Image.
	2.2.3 Restriction of an applications.
	2.2.4 Surjection.
	2.2.5 Injection.
	2.2.6 Bijective
	2.2.7 Composition of Maps
	2.2.8 Reciprocal Map (Inverse Map)

	2.3 Exercises

	3 Binary Relations
	3.1 Definitions and Basic Properties
	3.1.1 Definition and Representations
	3.1.2 Types of Representations

	3.2 Properties of Binary Relations
	3.2.1 Fundamental Properties
	3.2.2 Special Types of Relations

	3.3 Equivalence Relations
	3.3.1 Equivalence Classes
	3.3.2 Canonical Projection

	3.4 Order Relations
	3.4.1 Partial Orders
	3.4.2 Hasse Diagrams
	3.4.3 Special Elements in Posets

	3.5 Exercises

	4 Algebraic Structures
	4.1 Internal Composition Laws
	4.1.1 Definition and Basic Properties
	4.1.2 Properties of Composition Laws
	4.1.3 Identity Elements and Inverses
	4.1.4 Uniqueness of Inverses
	4.1.5 Regular Elements

	4.2 Groups
	4.2.1 Definition and Examples
	4.2.2 Subgroups
	4.2.3 Cosets and Lagrange's Theorem
	4.2.4 Basic Properties of Groups
	4.2.5 Homomorphisms
	4.2.6 Isomorphisms
	4.2.7 First Isomorphism Theorem

	4.3 Rings
	4.3.1 Definition and Basic Properties
	4.3.2 Subrings
	4.3.3 Special Elements in Rings

	4.4 Rules of Calculation in Rings
	4.4.1 Invertible Elements
	4.4.2 Zero Divisors
	4.4.3 Ring Homomorphisms
	4.4.4 Ideals

	4.5 Fields
	4.5.1 Finite Fields
	4.5.2 The Fields R and C
	4.5.3 Field Characteristics

	4.6 Exercises

	5 Ring of polynomials
	5.1 Polynomials and Degree
	5.2 Construction of the Polynomial Ring
	5.3 Arithmetic of Polynomials
	5.3.1 Divisibility
	5.3.2 Euclidean Division
	5.3.3 PGCD and PPCM of Two Polynomials
	5.3.4 Coprime Polynomials

	5.4 Factorization into Irreducible Polynomials
	5.5 Roots of Polynomials
	5.5.1 Roots and Degree
	5.5.2 Multiplicity of Roots

	5.6 Exercises

	Bibliography

