

Series 1: Mathematical Logic

Exercise 1: Let P, Q and L be three logical propositions. Construct the truth tables of the following formulas:

$$(P \Rightarrow Q) \Rightarrow L, (P \vee Q) \Rightarrow (L \vee Q), ((\bar{P} \vee Q) \wedge L) \Rightarrow (\bar{P} \wedge Q) \vee (Q \wedge L)$$

Exercise 2: Let P and Q be two logical propositions.

1) The proposition $(P \wedge Q) \Rightarrow (\bar{P} \vee Q)$ is it true ?

2) Give the negation of $P \Rightarrow Q$ and the negation of $(P \Rightarrow Q) \Rightarrow Q$.

Exercise 3: Let f and g be two functions of \mathbb{R} in \mathbb{R} . Translate in terms of quantifiers the following expressions:

1) f is increased, bounded, even, odd.

2) f never be null.

3) f is periodic.

4) f is increasing, decreasing.

5) f is not the null function.

6) f never has the same values in two distinct antecedents.

7) f reaches all the values of \mathbb{N} .

8) f is less than g , f is not less than g .

Exercise 4: We consider the following assertions:

1) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y > 0$. 2) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad x + y > 0$.

3) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y > 0$. 4) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad y^2 > x$.

5) $\forall \varepsilon \in \mathbb{R}^{+*}, \exists \alpha \in \mathbb{R}^{+*}, \quad |x| < \alpha \Rightarrow |x^2| < \varepsilon$.

Are these assertions true or false? Give their negations.

Exercise 5: Let P and Q be two polynomials, are the following propositions equivalent?

1) $\forall x \in \mathbb{R}, (P(x) = 0 \text{ and } Q(x) = 0)$ and $[(\forall x \in \mathbb{R}, P(x) = 0) \text{ and } (\forall x \in \mathbb{R}, Q(x) = 0)]$.

2) $\forall x \in \mathbb{R}, (P(x) = 0 \text{ or } Q(x) = 0)$ and $[(\forall x \in \mathbb{R}, P(x) = 0) \text{ or } (\forall x \in \mathbb{R}, Q(x) = 0)]$.

Exercise 6: Let A be a part of \mathbb{R} .

1) Let P be the proposition "For any real $x \in A$, $x^2 \geq 12$ ". Negate P .

2) Assume that $A = \emptyset$. Is the negation of P true or false? P is true or false?

Exercise 7: 1) Prove by contraposition that for any natural number n , if n^2 is even then n is even.

2) Let x be a positive or zero real. Prove that if for every positive real y , $x \leq y$, then $x = 0$.

3) Let $n \in \mathbb{N}^*$. Demonstrate by using the absurd (Contradiction) that $n^2 + 1$ is not a square of an integer.

Exercise 8: Prove that

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : (n \geq N) \Rightarrow \left(2 - \varepsilon < \frac{2n+1}{n+2} < 2 + \varepsilon\right).$$

Exercise 9: For $n \in \mathbb{N}$, let us define two properties:

P_n : 3 divides $4^n - 1$ and Q_n : 3 divides $4^n + 1$.

1) Prove that for any $n \in \mathbb{N}$, $P_n \Rightarrow P_{n+1}$ and $Q_n \Rightarrow Q_{n+1}$.

2) Demonstrate that P_n is true for any $n \in \mathbb{N}$.

3) What to think, then, of the assertion: $\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n_0 \geq n \Rightarrow Q_n$?