CHAPTER 1

LOGIC AND METHODS OF REASONING

This chapter provides a formal introduction to the principles of mathematical logic and
reasoning. It begins by defining propositions and their truth values, then explores core logi-
cal connectors: conjunction, disjunction, implication, and equivalence. Key concepts include
the contrapositive, converse, and negation of implications, governed by foundational algebraic
properties and De Morgan’s Laws. The scope of propositions is extended through universal
and existential quantifiers (V, 3), alongside the rules for their negation. Finally, the chap-
ter details essential proof techniques, including direct proof, proof by contraposition, proof by
contradiction, and mathematical induction, establishing the rigorous framework necessary for

mathematical argumentation.
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1.1 Rules of Formal Logic

Definition 1.1 A proposition is an expression to which the truth value true or false can be
assigned.

Example 1 (1) < Every prime number is even >, This proposition is false.

(2) v/2 is an irrational number, this proposition is true.
(3) 2 is less than 4, this proposition is true.

Definition 1.2 Any proposition demonstrated to be true is called a theorem (for example the

theorem of Pythagoras, Thales...)

1.2 Negation: notP, P or —P :

Definition 1.3 Let P be a proposition, the negation of P is a proposition designating the
opposite which we note (not P) or P or —P. Here is its truth table, we denote by 1 if the

proposition is true and 0 if it is false.

P
1
0

~ ||

Example 2 (1) Let E#0,P: (a € E), then P: (a ¢ E).

(2) P : The function f is positive, then P : The function f is not positive.
(3) P:x+2=0, then (not P) : z+2 #0.

1.3 Logical Connectors.

Let P, () be two propositions
1. The conjunction <and>>, < A >

Definition 1.4 the conjunction is the logical connective < and >, < A >, the proposition
(P and Q) or (P A Q) is the conjunction of the two propositions P, Q.

e (P AQ) is true if both P and @ are true.

e (P AQ) is false in other cases. We summarize all this in the following truth table.

PlQlPArQ
1]1] 1
1lo] o
ol1] o
olo| o
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Example 3 (1) 2 is an even number and 3 is a prime number, this proposition is true

(2) 3 <2 and 4 > 2, This proposition is false.
2. The disjunction < or >, <V >

Definition 1.5 Disjunction is a logical connective < or >, < V > we note the disjunction
between P,Q by (P or Q),(PV Q). PV Q is false if P and @Q are both false, otherwise (P V Q)

18 true.

We summarize all of this in the following truth table.

rlQlrvQ
1]1] 1
1o} 1
ol1] 1
olol o

Example 4 (1) 2 is an even number or 3 is a prime number. True.

(2) 3<2or2>4. False

1.4 Implication

Definition 1.6 The implication of two propositions P, () is noted P = () we say P implies ()
orif P then Q. P = Q is false if P is true and Q is false, otherwise (P = Q) is true in the

other cases.

PlQ|P=Q
1|1 1
110 0
0| 1 1
01 0 1

Example 5 (1) 0 <2z <9= \/z <3. True.

(2) It’s raining, so I take my umbrella. It’s true, it’s a consequence.
(3) Omar won the lottery = Omar played the lottery. True, it’s a consequence.

1.5 Converse of an Implication

Definition 1.7 The converse of the implication (P = Q) is the implication ) = P.
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Example 6 1) The converse of: 0 <z < 9= /r <3, is: /1 <3=0<x<0.

2) The converse of: (It’s raining, so I take my umbrella), is: (I take my umbrella, so it’s
raining).

3) The converse of: (Omar won the lottery = Omar played the lottery), is: (Omar played
the lottery = Omar won the lottery).

4) The contrapositive of implication. Let P,Q be two propositions, the contrapositive of

(P = Q) is (Q = P), we have
(P=Q) < (Q=P)
Remark 1 (P = Q) and (Q = P) have the same truth table, i.e., the same truth value.

Example 7 (1) The contrapositive of: (It’s raining, so I take my umbrella) is: (I don’t take
my umbrella, so it doesn’t rain).

(2) The contrapositive of: (Omar won the lottery = Omar played the lottery) is: (Omar
didn’t play the lottery = Omar didn’t win the lottery).

1.6 Equivalence

Definition 1.8 The equivalence of two propositions P, () is noted P < @, we can also write
(P = Q) and (Q = P). We say that P < @ if P and Q) have the same truth value, otherwise
(P < Q) is false.

PlQ|PesQ
1] 1 1
110 0
0] 1 0
010 1

Remark 2 (1) P < Q that is to say P is not equivalent to QQ when P # Q or Q) < P.
(2) P < Q can be read P if and only if Q.

Example 8 (1) z+2=0< 2= —-2.
(2) Omar won the lottery < Amar played the lottery.

1.7 Negation of an Implication

Let P, () be two propositions we have

(P=Q) & (PAQ).
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Example 9 (1) The negation of: (it’s raining, so I take my umbrella) is: (it’s raining and I
don’t take my umbrella).

(2) The negation of: (Omar won the lottery = Omar played the lottery) is: (Omar won the
lottery and Omar did not play the lottery).

(3) (x € [0,1] = x > 0) its negation is : (x € [0,1] Az < 0).

1.8 Conclusion

(1) The negation of (P = Q) is (P A Q).
(2) The contraposition of (P = Q) is (Q = P).
(3) The converse of (P = Q) is (Q = P).

Proposition 1.1 We have: (P = Q) < (PV Q).

Proof. It suffices to show that (P = @) has the same truth value as (P V @Q), we can see
this clearly in the following truth table:

PlQ|P|P=>Q|PVQ
11110 1 1
110]0 0 0
011 1 1
0011 1 1
(I
Theorem 1 Let P, () be two propositions, we have:
(Pe=Q)e (P=Q)N(Q=P).
Proof. We have
PlQI P=Q|Q=P|(P=QANQ@=P) | (PeQ)
11 1 1 1 1
110 0 1 0 0
01 1 0 0 0
00 1 1 1 1
O
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1.9 Properties of Logical Connectors

Proposition 1.2 Whatever the truth value of the propositions P,Q), R the following properties
are always true.

(1) PV P (Tautology)

(2) P < P (Double Negation)

(3) PN\ P < P (Idempotence of A) (4) PN Q < QA P. Commutativity of A

(5) PV Q< QV P. Commutativity of V

(6) (PANQ)AR)< (PA(QAR)) Associativity of N

(7) (PVQ)VR)< (PV(QVR)) Associativity of V

(8) PN (QV R) < (PAQ)V (P A R) Distributivity of A\ over V

(9) PV(QAR)< (PVQ)A(PV R) Distributivity of \/ over A

(10) PAQ < (PV Q) (De Morgan’s Law)

(11) PV Q < (P AQ) (De Morgan’s Law)

(12) (P = Q) & (PVQ)

(13) P=Q < (PAQ)

(14) (P Q) & (P= Q) A (Q = P)

(15) P=Q < (PeQ)e (PeQ)

(16) (P = Q) < (Q = P) (Contraposition)

(17) (P = Q) < (PANQ = P)

(18) (P = Q) & (PNQ = Q)

(19) (P= Q)< (PANQ = RAR)

(20) (P=QVR)& (PANQ= R)

(21) (PNQ = R)< (P=(Q=R))

(22) (P = Q)N (Q = R) = (P = R) (Transitivity of implication)
(23) (P < Q)N (Q < R) = (P < R) (Transitivity of equivalence)
(24) (P=Q)AN(R=9S5)=(PANR=QAS)

(25) (P=Q)AN(R=S)=(PVR=QVS)

1.10 Quantifiers

1.10.1 Universal quantifier V

Definition 1.9 Let P(x) be a proposition that depends on x and E a set, we have:
(Ve € E,P(z)) & (v € E= P(x)).
Example 10 (1) Vz € R,2* > 0 (True)

(2) Vo € R, z? > 0 (False, because 0> = 0)
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1.10.2 Existential Quantifier

Definition 1.10 Let P(x) be a proposition that depends on x and E a set, we have:
(Jz € E,P(z)) & (z € E A P(2)).

Example 11 (1) 3z € R, 2% =2 (True, z = v/2)

(2) 3r € R, 22 = —1 (False)

1.10.3 Uniqueness Quantifier 3!
Definition 1.11 Let P(x) be a proposition that depends on x and E a set, we have:

dr € E, P(x)

(3lz € E,P(x)) & { Vz,y € E,(P(z) A P(y) = 1 =1)

Example 12 (1) 3z € R,2? =0 (True, v =0)

(2) Az € R,2? =1 (False, z = 1 and z = —1)

1.10.4 Negation of Quantifiers:

We have:
(1) (Vz € E,P(z)) & (3x € E, P(2))
(2) Bxr € E,P(z)) & (Vx € E, P(x))
(3) 3z € E,P(x)) & [Vz € E,P(x))V 3x,y € E,x # y, P(x) A P(y))]

Example 13 (1) (Vz € R,22 > 0) & (Jz € R, 2% < 0)

(2) (z €eR, 22 =2) & (Vo e R 2 #2)
3) Bz eR,22=0) VzeR,2>#0)V (3r,y e R,x £y, 22 =0,y> =0)

1.11 Methods of Reasoning

1.11.1 Direct Reasoning

Theorem 2 To prove that P = Q) is true, we assume that P is true and we show that Q) is

true.

Example 14 Show that: Vn € N, n even = n? even.

Proof. Let n € N even, so 3k € N,n = 2k, then n? = 4k? = 2(2k?) so n? is even. 0
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1.11.2 Reasoning by Contraposition

Theorem 3 To prove that P = Q) is true, we show that Q = P is true.

Example 15 Show that: Vn € N,n? even = n even.

Proof. We show by contraposition: n odd = n? odd.
Let n € N odd, so 3k € N,n = 2k + 1, then n? = 4k® + 4k + 1 = 2(2k* + 2k) + 1 so n? is
odd. a

1.11.3 Reasoning by Contradiction (Absurdity)

Theorem 4 To prove that P is true, we assume that P is true and we show that this leads to

a contradiction (absurdity).

Example 16 Show that: V2 is irrational.

Proof.  Assume that v/2 is rational, so Jp, ¢ € N*, with p A ¢ = 1 such that v/2 = 75’, then
p? = 2¢?, so p? is even, so p is even, so Ik € N*,p = 2k, then 4k? = 2¢°> = ¢* = 2k?, so ¢* is

even, so ¢ is even, so p A ¢ # 1, contradiction. O

1.11.4 Reasoning by Recurrence

Theorem 5 Let P(n) be a proposition that depends on n € N.
To prove that Vn € N, P(n) is true, it suffices to show:
1) Initialization: P(0) is true.
2) Heredity: ¥Yn € N, P(n) = P(n+ 1) is true.

Example 17 Show that: ¥n € N, Y p_ k = "2t

Proof. 1) Forn=0,%)_,k=0and w =0, so P(0) is true.

2) Let n € N, assume that P(n) is true, ie., Y ,_ k = "("2+1), let’s show that P(n + 1) is

true.

We have
n+1 n
n(n+1) nn+1)+2n+1) (n+1)(n+2)
Zk=2k+(n+1):T+(n+1): 5 = > ,
k=0 k=0
so P(n + 1) is true.
By recurrence, Vn € N, P(n) is true. O
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1.12 Exercises

Exercise 1 Truth Tables

Let P,QQ and L be three logical propositions.

formulas:

(P= Q)= 1L, (PVQ)= (LVQ),

Construct the truth tables of the following

Solution. We will use 1 for True and 0 for False.

1. Formula: (P = (@)=L

(PVQAL) = (=P AQ)V(QAL))

PIQILIP=Q|(P=Q)=L
1111 1 1
11110 1 0
1101 0 1
11010 0 1
0(1]1 1 1
0(11]0 1 0
0(0]1 1 1
0/0]0 1 0
2. Formula: (PV Q)= (LV Q)
PIQ|L|PVQ|LVQ|(PVQ)=(LVQ)
17171 1 1
17170 1 1
1101 1 1
11010 0 0
01111 1 1
0,110 1 1
01011 1 1
0]0]0 0 1
3. Formula: (PVQ)AL)= (-PAQ)V(QAL))
PIQ[L|PVQ|(PVQAL|-P]| P QAL [ (=PAQ)V(QAL) | Formula =
11 1| 1 1 0 0 1 1 1
1{1]o] 1 0 0 0 0 0 1
tjo|1| 1 1 0 0 0 0 0
1{ofo] 1 0 0 0 0 0 1
o1 ]1] 1 1 1 1 1 1 1
ol1lo| 1 0 1 1 0 1 1
olol1| o 0 1 0 0 0 1
olojo| o 0 1 0 0 0 1
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Exercise 2 Implications and Negation
Let P and @ be two logical propositions. 1) Is the proposition (P A Q) = (=P V Q) true?
2) Give the negation of P = Q) and the negation of (P —= Q) = Q.

Solution. 1) The proposition (P A Q) = (=P V ) is a tautology (always true).
Justification: =P V @ is logically equivalent to P = ). The proposition becomes (P A Q) =
(P = Q). If PAQ is true, then P and @ are true. If @ is true, then P = @) is true. The

implication is therefore always true.
2) Negations:

e Negation of P = @Q: (P = Q) =P A—Q
e Negation of (P —= Q) = Q:

“(P=Q)=Q) =(P=>Q)A-Q
(~PVQ)A-Q
(
(

“PA=Q)V(QA-Q)
-P A Q) V False
P A-Q

Exercise 3 Quantifiers
Let f and g be two functions from R to R. Translate the following expressions into terms of
quantifiers: 1) f is increasing, bounded, even, odd.
2) [ is never zero.
3) f is periodic.
4) f is increasing, decreasing.
5) [ is not the zero function.
6) f never takes the same value at two distinct points.

7) f reaches all values in N.

8) f is less than g, [ is not less than g.

Solution.
1. e Increasing: Va,y € R, (zr <y = f(x) < f(y))
e Bounded: 3M > 0,Vz € R, |f(z)| < M
e Even: Va € R, f(—z) = f(x)
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e Odd: Vx € R, f(—z) = —f(x)
2. Ve € R, f(x)#£0 or PreR, f(x)=0
3. AT >0,Ve e R, f(z+T) = f(x)

4. e Increasing: Vz,y € R, (z <y = f(z) < f(y))
e Decreasing: Vz,y € R, (z <y = f(x) > f(v))

ot

.dreR, f(x) #0

(=)

o,y e R (x#y= f(z)# fly) or Va,ye R (f(z)=[fly)=z=y)

7.Vne N,dz € R, f(z) =n

8. e fisless than g: Vo € R, f(x) < g(x)
e fis not less than ¢: 3z € R, f(x) > g(x)

Exercise 4 Truth Value and Negation
Consider the following assertions:

1. ze RVye Rx+y >0

2.Vre R, Jye Rox+y >0

3. Vee RVye Rox+y >0

4. Ix e RVYye Ry* >z

5. Ve € R™ Ja € R™ x| < a = |2?| < e

Are these assertions true or false? Give their negations.

Solution.

1. False. For a fixed z, choose y = —x — 1. Then z +y = —1 > 0 is false.
Negation: Ve € R,y e R,x+y <0

2. True. For any z, choose y = ||+ 1. Thenz+y=xz+|z|+1>1>0.
Negation: dJr € R,Vy € R,z +y <0

3. False. Counterexample: v = -1,y = -1 =2+ y = —2 > 0 is false.
Negation: dr € R,dy € R,z +y <0
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4. True. Choose z = —1. Forally € R, y> > 0 > —1.
Negation: Vo € R,y € R,y* <u

5. True. This defines lim, ,oz? = 0. For any € > 0, choose a = /e. If |z| < /¢, then
7% < e.
Negation: Je € R™* Vo € R™, (Ja] < a) A (|2%] > ¢€)

Exercise 5 FEquivalence of Propositions

Let P and @ be two polynomials. Are the following propositions equivalent?
1. Vz e R, (P(x) =0 and Q(z) =0) and [(Vx € R, P(x) =0) and (Vz € R,Q(z) = 0)]

2.Vx € R,(P(z) =0 or Q(z) =0) and [(Vx € R, P(z) = 0) or (Vx € R,Q(z) = 0)]

Solution.

1. These statements are equivalent. The left part, Vz(P(z) = 0 A Q(z) = 0), means both
polynomials are zero at every point x, which is the definition of both being the zero

polynomial: (Vz, P(z) = 0) A (Vz,Q(x) = 0).
2. These statements are not equivalent.

e The left part, Vz(P(z) = 0V @Q(x) = 0), means every real number is a root of at
least one polynomial (e.g., P(x) =z, Q(x) =z — 1).

e The right part, (Vz, P(z) = 0) V (Vz,Q(z) = 0), means at least one polynomial is
identically zero.

e The left can be true without the right being true (see example).

Exercise 6 Negation and the Empty Set
Let A be a subset of R.

1) Let P be the proposition "For any real x € A, x> > 127. Negate P.
2) Assume that A = (. Is the negation of P true or false? Is P true or false?

Solution. 1) Negation of P: 3x € A, 2? < 12
2)If A=0:

e P: "For all x in the empty set, 22 > 12”. This is a vacuously true statement. There are

no elements in A to violate the condition.
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e Negation of P (Jz € A, 2% < 12): This claims an element exists in the empty set. This is

false.

Exercise 7 Proof Techniques
1) Prove by contraposition that for any natural number n, if n® is even then n is even.
2) Let x be a positive or zero real. Prove that if for every positive real y,x <y, then x = 0.
3) Let n € N*. Prove by contradiction that n? + 1 is not a perfect square.

Solution. 1) Proof by contraposition: The contrapositive is: If n is not even (i.e., odd),
then n? is not even (i.e., odd). Assume n is odd. Then n = 2k + 1 for some integer k. Then
n? = (2k+1)* = 4k* + 4k + 1 = 2(2k? + 2k) + 1. Since 2k? + 2k is an integer, n? is odd. QED.

2) Proof by contraposition: We prove: if x # 0, then Jy > 0 such that =z > y (i.e., the

T

hypothesis is false). Assume z # 0. Since # > 0, we have x > 0. Choose y = 5. Clearly
y > 0. And x > 5 = y. We have found a y > 0 such that z > y, contradicting Vy > 0,2 < y.
Therefore, the original implication is true.

3) Proof by contradiction: Assume, for contradiction, that In € N* such that n? + 1 is a
perfect square, say m?. So, n? + 1 = m?, which implies 1 = m? — n* = (m — n)(m + n). Since
m,n € N* and m? = n> +1 > n? we have m > n, so (m —n) and (m +n) are positive integers.
The only factorizations of 1 are 1 x 1. Therefore: m —n =1 and m +n = 1. Solving this
system: Adding the equations gives 2m = 2 = m = 1. Substituting back: 1 —n=1=n = 0.
But n = 0 ¢ N*. This is a contradiction. Therefore, our initial assumption was false, and

n? 4+ 1 is not a perfect square for n > 1. O

Exercise 8 Limit Proof

Prove that
2n +1
Ve>0,ANeN: (n>N) = (2—€< <2+e€).
n -+ 2
Solution. First, simplify the expression:
2n+1_2n+4—3_2 3
n+2  n+2 7 n+2
We want to find IV such that for all n > N:
antl 2| < = 5 < 5 <
n+2 ‘ n+2 ¢ n+2 ¢
Solving for n:
3 3
<e —=>n+2>- = n>-—2
n+2 € €
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Proof: Let € > 0 be given. Choose N € N such that N > % — 2. (Such an N exists by the
Archimedean Property). Now, for all n > N, we have:

3 3
n>N>-—2 — n+2>- —
€

<€
€ n+2
Since ni—&—Q > 0, this means ‘25:21 — 2‘ = ni” < €. This is equivalent to 2 — € < 27?:21 < 2+e
This completes the proof. O

Exercise 9 Mathematical Induction

Forn € N, define two properties: P, : 3| (4" — 1) and Q, : 3| (4™ + 1). 1) Prove that for
anyn € N, P, = P11 and Q, = Q,+1. 2) Prove that P, is true for anyn € N. 3) What
can be concluded about the assertion: dng € N,¥Yn € N,ng >n = @, ?

Solution. 1) Inductive Steps:
e For P, = P, 1: Assume P, is true: 4" — 1 = 3k.

4rtl 1 =4.4" 1
=403k +1)—1
=12k +4—1
=12k + 3
= 3(4k + 1)

So P,y is true.
e For ), = Q,1: Assume @Q, is true: 4" + 1 = 3m.

4" 1 =4-4" 41
=43m—-1)+1
=12m—-4+1
=12m -3
=3(4m —1)

S0 Q41 is true.
2) Proof that P, is true for all n € N:
e Base Case (n=0): 4° —1=1—1=0. Since 3|0, P is true.

e Inductive Step: Shown in part (1).
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e By mathematical induction, P, is true for all n € N.
3) The assertion dng € N,Vn € N,ng > n — @, is false.

e Check small values: @ : 4° + 1 = 2 (not divisible by 3), Q1 : 4+ 1 =5 (not divisible by
3), Q2 : 16 +1 =17 (not divisible by 3).

e The base case @) is false. The implication @), = @, is valid, but it only propagates
truth. Since the foundation (Qy) is false, @, is false for all n € N.

e Therefore, there does not exist any ng for which @), is true for all n < nyg.
O

Exercise 10 Let P,Q, R be three propositions. Simplify the following propositions: 1) (P A

Q) V(PAQ)
2)(PAQ)V(PAQAR)
3) (P=QA(P=Q)
) (P=QAP=Q
5) (P=Q)V(P=Q)
6) (P=Q)V(P=Q)
Solution.

H(PAQ)V(PAQ)=PA(QVQ)=PAl=P

2) (PAQ)V(PAQAR) <= PA(QV(QAR)) <= PA((QVQ)A(QVR))
<~ PANIAN(QVR) <= PA(QVR)

3) (P=QA(P=Q = (P=QAQ) < (P=0)=P
HP==QAN(P=Q)<= (PVQ)N(PVQ)<—= (PANP)VQ<—=0VQ=0Q
5)(P=Q)V(P=Q)+— (PVQ)V(PVQ)<=PV(QVQ)<PVl=1
6)( P=Q)V(P=Q)+= (PVQ)V(PVQ)+ (PVP)V(QVQ) <= 1VQ 10
Exercise 11 Let P, Q be two propositions. Show that:

1)(P=Q) & (PAQ=P)

2)(P=Q)e (PNQ=Q)

) (P= Q)< (PAQ= RAR)
4)(P=QVR)< (PAQ=R)

5)(PNQ=R)< (P=(Q=R)

Solution.
H(PANQ=P)+—= (PANQ)VP <+ (PVQ)VP <<= PVQ <+ P=Q
2) (PANQ=Q)—= (PAQ)VQ = (PVQ)VQ = PVQ <<= P=Q
3)(PANQ=RAR)<= (PAQ)V(RAR)+= (PVQ)V0<= PVQ+=P=Q
4) (PNQ=R) <= (PANQ)VR+= (PVQ)VR<+= PV (QVR) < P= (QVR)
5 (P=(Q = R)) <= PV(QVR)+= (PVQ)VR<+= (PANQ)VR < (PANQ) = RO
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Exercise 12 Write the negation of the following propositions:
Ve e R ye R x+y=0
2)dM € RVz € R, f(x) <M
3)Ve>0,d4n>0,Ve € R, |z —a| <n=|f(x)— fla)] <€
4)Ver e RVy e R, (z <y = f(z) < f(y))
5)Ve € RNy € Rz #y= f(z) # f(y)

Solution.
1)Ize RVye Rz +y#0
2)VM € R,3x € R, f(z) > M
3) e >0,Vn>0,Axr € R, |z —a| <nA|f(x)— fla)] > ¢
4)Jr € R,y € R, (x <y A f(z) > f(y))
5)dre R,y e Rx#yA f(x)=f(y) D

Exercise 13 Show by recurrence that:

* n n(n+1)(2n+1
1)Vn e N, Y| 42 — nlotlGni)

2
2)Vn e N*, 3" k* = (@
3) Vn € N, 3%t 4 242 s dinsible by 7

4)¥n € N, 10" + 3 x 472 + 5 is divisible by 9

Solution.

1) Forn=1,5,_,k*=1and % =3 =1,s0 P(1) is true.

Let n € N*, assume that P(n) is true, i.e., >, k* = w, let’s show that P(n + 1)

1s true.

We have
:Zﬂlf - : 24 (nr 02 = MOFUC D) e
_ o+ D+ 1) +6(n+1)>  (n+1)(n(2n+1) +6(n+ 1)
_ (n+1)(2n; +67n+6) _ (n+1)(n—|(—52)(2n+3?7

so P(n + 1) is true.
By recurrence, Vn € N*, P(n) is true.

1 10+1) | 2
2) Forn=1,%,_,k*=1and <@> =1, s0 P(1) is true.

2
2
Let n € N*, assume that P(n) is true, Le.,, Y ,_ k% = (%) , let’s show that P(n+1) is

true.
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Exercises hapter 1. Logic and Methods of Reasoning
We have
n+1 n 2
1
Sk = S B+ (n+1)’ = (—”(”; )) +(n+1)°
k=1 k=1
_ on*(n+1)2+4n+1°  (n+1)*(n*+4n+4)
B 4 B 4
_ it D)’(nt2)?” ((n+ 1)(n+2)>2
B 4 B 2 ’

so P(n+1) is true.
By recurrence, Vn € N*, P(n) is true.
3) For n = 0,3' + 2% = 34 4 = 7 divisible by 7, so P(0) is true.
Let n € N, assume that P(n) is true, i.e., 7 | 3*"*1 4 2972 let’s show that P(n + 1) is true.
We have

32(n+1)+1 + 24(n+1)+2 — 32n+3 4 24?’L+6 — 9 % 32n+1 4 16 % 241’L+2

— 9(32n+1 + 24n+2) 4 7 % 24n+2’

so 7| 32713 4 246 50 P(n + 1) is true.
By recurrence, Vn € N, P(n) is true.
4) Forn =0,10° + 3 x 42 + 5 =1+ 48 + 5 = 54 divisible by 9, so P(0) is true.
Let n € N, assume that P(n) is true, i.e., 9 | 10" + 3 x 4" + 5, let’s show that P(n + 1) is

true.

We have 1

0" 43 x4 +5 = 10x 10" +12x 4" +5
= 10(10" + 3 x 4™ 4 5) — 18 x 4" — 45
= 10(10" + 3 x 4" 4+ 5) — 9(2 x 4"*% 4+ 5),

50 9] 10" +3 x 4" + 5 s0 P(n+ 1) is true.
By recurrence, Vn € N, P(n) is true. O
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