
CHAPTER 1

LOGIC AND METHODS OF REASONING

This chapter provides a formal introduction to the principles of mathematical logic and

reasoning. It begins by defining propositions and their truth values, then explores core logi-

cal connectors: conjunction, disjunction, implication, and equivalence. Key concepts include

the contrapositive, converse, and negation of implications, governed by foundational algebraic

properties and De Morgan’s Laws. The scope of propositions is extended through universal

and existential quantifiers (∀, ∃), alongside the rules for their negation. Finally, the chap-

ter details essential proof techniques, including direct proof, proof by contraposition, proof by

contradiction, and mathematical induction, establishing the rigorous framework necessary for

mathematical argumentation.

——————————————
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Rules of Formal Logic Chapter 1. Logic and Methods of Reasoning

1.1 Rules of Formal Logic

Definition 1.1 A proposition is an expression to which the truth value true or false can be

assigned.

Example 1 (1) ≪ Every prime number is even ≫, This proposition is false.

(2)
√
2 is an irrational number, this proposition is true.

(3) 2 is less than 4, this proposition is true.

Definition 1.2 Any proposition demonstrated to be true is called a theorem (for example the

theorem of Pythagoras, Thales...)

1.2 Negation: notP, P̄ or ¬P :

Definition 1.3 Let P be a proposition, the negation of P is a proposition designating the

opposite which we note (not P ) or P or ¬P . Here is its truth table, we denote by 1 if the

proposition is true and 0 if it is false.

P P̄

1 0

0 1

Example 2 (1) Let E ̸= ∅, P : (a ∈ E), then P̄ : (a /∈ E).

(2) P : The function f is positive, then P̄ : The function f is not positive.

(3) P : x+ 2 = 0, then ( not P ) : x+ 2 ̸= 0.

1.3 Logical Connectors.

Let P,Q be two propositions

1. The conjunction ≪and≫,≪ ∧ ≫
Definition 1.4 the conjunction is the logical connective ≪ and ≫, ≪ ∧ ≫, the proposition

(P and Q) or (P ∧Q) is the conjunction of the two propositions P,Q.

� (P ∧Q) is true if both P and Q are true.

� (P ∧Q) is false in other cases. We summarize all this in the following truth table.

P Q P ∧Q
1 1 1

1 0 0

0 1 0

0 0 0
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Example 3 (1) 2 is an even number and 3 is a prime number, this proposition is true

(2) 3 ≤ 2 and 4 ≥ 2, This proposition is false.

2. The disjunction ≪ or ≫,≪ ∨ ≫

Definition 1.5 Disjunction is a logical connective ≪ or ≫,≪ ∨ ≫ we note the disjunction

between P,Q by (P or Q),(P ∨Q). P ∨Q is false if P and Q are both false, otherwise (P ∨Q)
is true.

We summarize all of this in the following truth table.

P Q P ∨Q
1 1 1

1 0 1

0 1 1

0 0 0

Example 4 (1) 2 is an even number or 3 is a prime number. True.

(2) 3 ≤ 2 or 2 ≥ 4. False

1.4 Implication

Definition 1.6 The implication of two propositions P,Q is noted P ⇒ Q we say P implies Q

or if P then Q. P ⇒ Q is false if P is true and Q is false, otherwise (P ⇒ Q) is true in the

other cases.
P Q P ⇒ Q

1 1 1

1 0 0

0 1 1

0 0 1

Example 5 (1) 0 ≤ x ≤ 9 ⇒ √
x ≤ 3. True.

(2) It’s raining, so I take my umbrella. It’s true, it’s a consequence.

(3) Omar won the lottery ⇒ Omar played the lottery. True, it’s a consequence.

1.5 Converse of an Implication

Definition 1.7 The converse of the implication (P ⇒ Q) is the implication Q⇒ P .
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Example 6 1) The converse of: 0 ≤ x ≤ 9 ⇒ √
x ≤ 3, is:

√
x ≤ 3 ⇒ 0 ≤ x ≤ 9.

2) The converse of: (It’s raining, so I take my umbrella), is: (I take my umbrella, so it’s

raining).

3) The converse of: (Omar won the lottery ⇒ Omar played the lottery), is: (Omar played

the lottery ⇒ Omar won the lottery).

4) The contrapositive of implication. Let P,Q be two propositions, the contrapositive of

(P ⇒ Q) is (Q̄⇒ P̄ ), we have

(P ⇒ Q) ⇐⇒ (Q̄⇒ P̄ )

Remark 1 (P ⇒ Q) and (Q̄⇒ P̄ ) have the same truth table, i.e., the same truth value.

Example 7 (1) The contrapositive of: (It’s raining, so I take my umbrella) is: (I don’t take

my umbrella, so it doesn’t rain).

(2) The contrapositive of: (Omar won the lottery ⇒ Omar played the lottery) is: (Omar

didn’t play the lottery ⇒ Omar didn’t win the lottery).

1.6 Equivalence

Definition 1.8 The equivalence of two propositions P,Q is noted P ⇔ Q, we can also write

(P ⇒ Q) and (Q⇒ P ). We say that P ⇔ Q if P and Q have the same truth value, otherwise

(P ⇔ Q) is false.

P Q P ⇔ Q

1 1 1

1 0 0

0 1 0

0 0 1

Remark 2 (1) P ⇎ Q that is to say P is not equivalent to Q when P ⇏ Q or Q⇍ P .

(2) P ⇔ Q can be read P if and only if Q.

Example 8 (1) x+ 2 = 0 ⇔ x = −2.

(2) Omar won the lottery ⇔ Amar played the lottery.

1.7 Negation of an Implication

Let P,Q be two propositions we have

(P ⇒ Q) ⇔ (P ∧ Q̄).
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Example 9 (1) The negation of: (it’s raining, so I take my umbrella) is: (it’s raining and I

don’t take my umbrella).

(2) The negation of: (Omar won the lottery ⇒ Omar played the lottery) is: (Omar won the

lottery and Omar did not play the lottery).

(3) (x ∈ [0, 1] ⇒ x ≥ 0) its negation is : (x ∈ [0, 1] ∧ x < 0).

1.8 Conclusion

(1) The negation of (P ⇒ Q) is (P ∧ Q̄).
(2) The contraposition of (P ⇒ Q) is (Q̄⇒ P̄ ).

(3) The converse of (P ⇒ Q) is (Q⇒ P ).

Proposition 1.1 We have: (P ⇒ Q) ⇔ (P̄ ∨Q).

Proof. It suffices to show that (P ⇒ Q) has the same truth value as (P̄ ∨ Q), we can see

this clearly in the following truth table:

P Q P̄ P ⇒ Q P̄ ∨Q
1 1 0 1 1

1 0 0 0 0

0 1 1 1 1

0 0 1 1 1

2

Theorem 1 Let P,Q be two propositions, we have:

(P ⇔ Q) ⇔ (P ⇒ Q) ∧ (Q⇒ P ).

Proof. We have

P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P ) (P ⇔ Q)

1 1 1 1 1 1

1 0 0 1 0 0

0 1 1 0 0 0

0 0 1 1 1 1

2
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1.9 Properties of Logical Connectors

Proposition 1.2 Whatever the truth value of the propositions P,Q,R the following properties

are always true.

(1) P̄ ∨ P (Tautology)

(2) P ⇔ P (Double Negation)

(3) P ∧ P ⇔ P (Idempotence of ∧) (4) P ∧Q⇔ Q ∧ P . Commutativity of ∧
(5) P ∨Q⇔ Q ∨ P . Commutativity of ∨
(6) ((P ∧Q) ∧R) ⇔ (P ∧ (Q ∧R)) Associativity of ∧
(7) ((P ∨Q) ∨R) ⇔ (P ∨ (Q ∨R)) Associativity of ∨
(8) P ∧ (Q ∨R) ⇔ (P ∧Q) ∨ (P ∧R) Distributivity of ∧ over ∨
(9) P ∨ (Q ∧R) ⇔ (P ∨Q) ∧ (P ∨R) Distributivity of ∨ over ∧
(10) P ∧Q⇔ (P̄ ∨ Q̄) (De Morgan’s Law)

(11) P ∨Q⇔ (P̄ ∧ Q̄) (De Morgan’s Law)

(12) (P ⇒ Q) ⇔ (P̄ ∨Q)
(13) P ⇒ Q⇔ (P ∧ Q̄)
(14) (P ⇔ Q) ⇔ (P ⇒ Q) ∧ (Q⇒ P )

(15) P ⇔ Q⇔ (P ⇔ Q̄) ⇔ (P̄ ⇔ Q)

(16) (P ⇒ Q) ⇔ (Q̄⇒ P̄ ) (Contraposition)

(17) (P ⇒ Q) ⇔ (P ∧ Q̄⇒ P̄ )

(18) (P ⇒ Q) ⇔ (P ∧ Q̄⇒ Q)

(19) (P ⇒ Q) ⇔ (P ∧ Q̄⇒ R ∧ R̄)
(20) (P ⇒ Q ∨R) ⇔ (P ∧ Q̄⇒ R)

(21) (P ∧Q⇒ R) ⇔ (P ⇒ (Q⇒ R))

(22) (P ⇒ Q) ∧ (Q⇒ R) ⇒ (P ⇒ R) (Transitivity of implication)

(23) (P ⇔ Q) ∧ (Q⇔ R) ⇒ (P ⇔ R) (Transitivity of equivalence)

(24) (P ⇒ Q) ∧ (R ⇒ S) ⇒ (P ∧R ⇒ Q ∧ S)
(25) (P ⇒ Q) ∧ (R ⇒ S) ⇒ (P ∨R ⇒ Q ∨ S)

1.10 Quantifiers

1.10.1 Universal quantifier ∀
Definition 1.9 Let P (x) be a proposition that depends on x and E a set, we have:

(∀x ∈ E,P (x)) ⇔ (x ∈ E ⇒ P (x)).

Example 10 (1) ∀x ∈ R, x2 ≥ 0 (True)

(2) ∀x ∈ R, x2 > 0 (False, because 02 = 0)
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1.10.2 Existential Quantifier ∃
Definition 1.10 Let P (x) be a proposition that depends on x and E a set, we have:

(∃x ∈ E,P (x)) ⇔ (x ∈ E ∧ P (x)).

Example 11 (1) ∃x ∈ R, x2 = 2 (True, x =
√
2)

(2) ∃x ∈ R, x2 = −1 (False)

1.10.3 Uniqueness Quantifier ∃!
Definition 1.11 Let P (x) be a proposition that depends on x and E a set, we have:

(∃!x ∈ E,P (x)) ⇔
{

∃x ∈ E,P (x)

∀x, y ∈ E, (P (x) ∧ P (y) ⇒ x = y)

Example 12 (1) ∃!x ∈ R, x2 = 0 (True, x = 0)

(2) ∃!x ∈ R, x2 = 1 (False, x = 1 and x = −1)

1.10.4 Negation of Quantifiers:

We have:

(1) (∀x ∈ E,P (x)) ⇔ (∃x ∈ E, P̄ (x))

(2) (∃x ∈ E,P (x)) ⇔ (∀x ∈ E, P̄ (x))

(3) (∃!x ∈ E,P (x)) ⇔ [(∀x ∈ E, P̄ (x)) ∨ (∃x, y ∈ E, x ̸= y, P (x) ∧ P (y))]

Example 13 (1) (∀x ∈ R, x2 ≥ 0) ⇔ (∃x ∈ R, x2 < 0)

(2) (∃x ∈ R, x2 = 2) ⇔ (∀x ∈ R, x2 ̸= 2)

(3) (∃!x ∈ R, x2 = 0) ⇔ (∀x ∈ R, x2 ̸= 0) ∨ (∃x, y ∈ R, x ̸= y, x2 = 0, y2 = 0)

1.11 Methods of Reasoning

1.11.1 Direct Reasoning

Theorem 2 To prove that P ⇒ Q is true, we assume that P is true and we show that Q is

true.

Example 14 Show that: ∀n ∈ N, n even ⇒ n2 even.

Proof. Let n ∈ N even, so ∃k ∈ N, n = 2k, then n2 = 4k2 = 2(2k2) so n2 is even. 2
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1.11.2 Reasoning by Contraposition

Theorem 3 To prove that P ⇒ Q is true, we show that Q̄⇒ P̄ is true.

Example 15 Show that: ∀n ∈ N, n2 even ⇒ n even.

Proof. We show by contraposition: n odd ⇒ n2 odd.

Let n ∈ N odd, so ∃k ∈ N, n = 2k + 1, then n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 so n2 is

odd. 2

1.11.3 Reasoning by Contradiction (Absurdity)

Theorem 4 To prove that P is true, we assume that P̄ is true and we show that this leads to

a contradiction (absurdity).

Example 16 Show that:
√
2 is irrational.

Proof. Assume that
√
2 is rational, so ∃p, q ∈ N∗, with p ∧ q = 1 such that

√
2 = p

q
, then

p2 = 2q2, so p2 is even, so p is even, so ∃k ∈ N∗, p = 2k, then 4k2 = 2q2 ⇒ q2 = 2k2, so q2 is

even, so q is even, so p ∧ q ̸= 1, contradiction. 2

1.11.4 Reasoning by Recurrence

Theorem 5 Let P (n) be a proposition that depends on n ∈ N.
To prove that ∀n ∈ N, P (n) is true, it suffices to show:

1) Initialization: P (0) is true.

2) Heredity: ∀n ∈ N, P (n) ⇒ P (n+ 1) is true.

Example 17 Show that: ∀n ∈ N,
∑n

k=0 k = n(n+1)
2

.

Proof. 1) For n = 0,
∑0

k=0 k = 0 and 0(0+1)
2

= 0, so P (0) is true.

2) Let n ∈ N, assume that P (n) is true, i.e.,
∑n

k=0 k = n(n+1)
2

, let’s show that P (n + 1) is

true.

We have

n+1∑
k=0

k =
n∑

k=0

k + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
,

so P (n+ 1) is true.

By recurrence, ∀n ∈ N, P (n) is true. 2
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1.12 Exercises

Exercise 1 Truth Tables

Let P,Q and L be three logical propositions. Construct the truth tables of the following

formulas:

(P =⇒ Q) =⇒ L, (P ∨Q) =⇒ (L ∨Q), ((P ∨Q) ∧ L) =⇒ ((¬P ∧Q) ∨ (Q ∧ L))

Solution. We will use 1 for True and 0 for False.

1. Formula: (P =⇒ Q) =⇒ L

P Q L P ⇒ Q (P ⇒ Q) ⇒ L

1 1 1 1 1

1 1 0 1 0

1 0 1 0 1

1 0 0 0 1

0 1 1 1 1

0 1 0 1 0

0 0 1 1 1

0 0 0 1 0

2. Formula: (P ∨Q) =⇒ (L ∨Q)

P Q L P ∨Q L ∨Q (P ∨Q) ⇒ (L ∨Q)
1 1 1 1 1 1

1 1 0 1 1 1

1 0 1 1 1 1

1 0 0 1 0 0

0 1 1 1 1 1

0 1 0 1 1 1

0 0 1 0 1 1

0 0 0 0 0 1

3. Formula: ((P ∨Q) ∧ L) =⇒ ((¬P ∧Q) ∨ (Q ∧ L))
P Q L P ∨Q (P ∨Q) ∧ L ¬P ¬P ∧Q Q ∧ L (¬P ∧Q) ∨ (Q ∧ L) Formula ⇒
1 1 1 1 1 0 0 1 1 1

1 1 0 1 0 0 0 0 0 1

1 0 1 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0 0 1

0 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 1 0 1 1

0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1

2
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Exercise 2 Implications and Negation

Let P and Q be two logical propositions. 1) Is the proposition (P ∧ Q) =⇒ (¬P ∨ Q) true?

2) Give the negation of P =⇒ Q and the negation of (P =⇒ Q) =⇒ Q.

Solution. 1) The proposition (P ∧Q) =⇒ (¬P ∨Q) is a tautology (always true).

Justification: ¬P ∨ Q is logically equivalent to P ⇒ Q. The proposition becomes (P ∧ Q) ⇒
(P ⇒ Q). If P ∧ Q is true, then P and Q are true. If Q is true, then P ⇒ Q is true. The

implication is therefore always true.

2) Negations:

� Negation of P =⇒ Q: ¬(P ⇒ Q) ≡ P ∧ ¬Q

� Negation of (P =⇒ Q) =⇒ Q:

¬((P ⇒ Q) ⇒ Q) ≡ (P ⇒ Q) ∧ ¬Q
≡ (¬P ∨Q) ∧ ¬Q
≡ (¬P ∧ ¬Q) ∨ (Q ∧ ¬Q)
≡ (¬P ∧ ¬Q) ∨ False

≡ ¬P ∧ ¬Q

2

Exercise 3 Quantifiers

Let f and g be two functions from R to R. Translate the following expressions into terms of

quantifiers: 1) f is increasing, bounded, even, odd.

2) f is never zero.

3) f is periodic.

4) f is increasing, decreasing.

5) f is not the zero function.

6) f never takes the same value at two distinct points.

7) f reaches all values in N .

8) f is less than g, f is not less than g.

Solution.

1. � Increasing: ∀x, y ∈ R, (x < y =⇒ f(x) < f(y))

� Bounded: ∃M > 0,∀x ∈ R, |f(x)| ≤M

� Even: ∀x ∈ R, f(−x) = f(x)
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� Odd: ∀x ∈ R, f(−x) = −f(x)

2. ∀x ∈ R, f(x) ̸= 0 or ∄x ∈ R, f(x) = 0

3. ∃T > 0, ∀x ∈ R, f(x+ T ) = f(x)

4. � Increasing: ∀x, y ∈ R, (x < y =⇒ f(x) ≤ f(y))

� Decreasing: ∀x, y ∈ R, (x < y =⇒ f(x) ≥ f(y))

5. ∃x ∈ R, f(x) ̸= 0

6. ∀x, y ∈ R, (x ̸= y =⇒ f(x) ̸= f(y)) or ∀x, y ∈ R, (f(x) = f(y) =⇒ x = y)

7. ∀n ∈ N, ∃x ∈ R, f(x) = n

8. � f is less than g: ∀x ∈ R, f(x) < g(x)

� f is not less than g: ∃x ∈ R, f(x) ≥ g(x)

2

Exercise 4 Truth Value and Negation

Consider the following assertions:

1. ∃x ∈ R, ∀y ∈ R, x+ y > 0

2. ∀x ∈ R, ∃y ∈ R, x+ y > 0

3. ∀x ∈ R, ∀y ∈ R, x+ y > 0

4. ∃x ∈ R, ∀y ∈ R, y2 > x

5. ∀ϵ ∈ R+∗, ∃α ∈ R+∗, |x| < α =⇒ |x2| < ϵ

Are these assertions true or false? Give their negations.

Solution.

1. False. For a fixed x, choose y = −x− 1. Then x+ y = −1 > 0 is false.

Negation: ∀x ∈ R,∃y ∈ R, x+ y ≤ 0

2. True. For any x, choose y = |x|+ 1. Then x+ y = x+ |x|+ 1 ≥ 1 > 0.

Negation: ∃x ∈ R,∀y ∈ R, x+ y ≤ 0

3. False. Counterexample: x = −1, y = −1 ⇒ x+ y = −2 > 0 is false.

Negation: ∃x ∈ R,∃y ∈ R, x+ y ≤ 0
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4. True. Choose x = −1. For all y ∈ R, y2 ≥ 0 > −1.

Negation: ∀x ∈ R,∃y ∈ R, y2 ≤ x

5. True. This defines limx→0 x
2 = 0. For any ϵ > 0, choose α =

√
ϵ. If |x| < √

ϵ, then

|x2| < ϵ.

Negation: ∃ϵ ∈ R+∗, ∀α ∈ R+∗, (|x| < α) ∧ (|x2| ≥ ϵ)

2

Exercise 5 Equivalence of Propositions

Let P and Q be two polynomials. Are the following propositions equivalent?

1. ∀x ∈ R, (P (x) = 0 and Q(x) = 0) and [(∀x ∈ R,P (x) = 0) and (∀x ∈ R,Q(x) = 0)]

2. ∀x ∈ R, (P (x) = 0 or Q(x) = 0) and [(∀x ∈ R,P (x) = 0) or (∀x ∈ R,Q(x) = 0)]

Solution.

1. These statements are equivalent. The left part, ∀x(P (x) = 0 ∧ Q(x) = 0), means both

polynomials are zero at every point x, which is the definition of both being the zero

polynomial: (∀x, P (x) = 0) ∧ (∀x,Q(x) = 0).

2. These statements are not equivalent.

� The left part, ∀x(P (x) = 0 ∨ Q(x) = 0), means every real number is a root of at

least one polynomial (e.g., P (x) = x, Q(x) = x− 1).

� The right part, (∀x, P (x) = 0) ∨ (∀x,Q(x) = 0), means at least one polynomial is

identically zero.

� The left can be true without the right being true (see example).

2

Exercise 6 Negation and the Empty Set

Let A be a subset of R.

1) Let P be the proposition ”For any real x ∈ A, x2 ≥ 12”. Negate P .

2) Assume that A = ∅. Is the negation of P true or false? Is P true or false?

Solution. 1) Negation of P: ∃x ∈ A, x2 < 12

2) If A = ∅:

� P: ”For all x in the empty set, x2 ≥ 12”. This is a vacuously true statement. There are

no elements in A to violate the condition.
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� Negation of P (∃x ∈ A, x2 < 12): This claims an element exists in the empty set. This is

false.

2

Exercise 7 Proof Techniques

1) Prove by contraposition that for any natural number n, if n2 is even then n is even.

2) Let x be a positive or zero real. Prove that if for every positive real y, x ≤ y, then x = 0.

3) Let n ∈ N∗. Prove by contradiction that n2 + 1 is not a perfect square.

Solution. 1) Proof by contraposition: The contrapositive is: If n is not even (i.e., odd),

then n2 is not even (i.e., odd). Assume n is odd. Then n = 2k + 1 for some integer k. Then

n2 = (2k+1)2 = 4k2 +4k+1 = 2(2k2 +2k) + 1. Since 2k2 +2k is an integer, n2 is odd. QED.

2) Proof by contraposition: We prove: if x ̸= 0, then ∃y > 0 such that x > y (i.e., the

hypothesis is false). Assume x ̸= 0. Since x ≥ 0, we have x > 0. Choose y = x
2
. Clearly

y > 0. And x > x
2
= y. We have found a y > 0 such that x > y, contradicting ∀y > 0, x ≤ y.

Therefore, the original implication is true.

3) Proof by contradiction: Assume, for contradiction, that ∃n ∈ N∗ such that n2 + 1 is a

perfect square, say m2. So, n2 + 1 = m2, which implies 1 = m2 − n2 = (m− n)(m+ n). Since

m,n ∈ N∗ and m2 = n2+1 > n2, we have m > n, so (m−n) and (m+n) are positive integers.

The only factorizations of 1 are 1 × 1. Therefore: m − n = 1 and m + n = 1. Solving this

system: Adding the equations gives 2m = 2 ⇒ m = 1. Substituting back: 1− n = 1 ⇒ n = 0.

But n = 0 /∈ N∗. This is a contradiction. Therefore, our initial assumption was false, and

n2 + 1 is not a perfect square for n ≥ 1. 2

Exercise 8 Limit Proof

Prove that

∀ϵ > 0, ∃N ∈ N : (n ≥ N) =⇒ (2− ϵ <
2n+ 1

n+ 2
< 2 + ϵ).

Solution. First, simplify the expression:

2n+ 1

n+ 2
=

2n+ 4− 3

n+ 2
= 2− 3

n+ 2

We want to find N such that for all n ≥ N :∣∣∣∣2n+ 1

n+ 2
− 2

∣∣∣∣ < ϵ ⇒
∣∣∣∣− 3

n+ 2

∣∣∣∣ < ϵ ⇒ 3

n+ 2
< ϵ

Solving for n:
3

n+ 2
< ϵ =⇒ n+ 2 >

3

ϵ
=⇒ n >

3

ϵ
− 2
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Proof: Let ϵ > 0 be given. Choose N ∈ N such that N > 3
ϵ
− 2. (Such an N exists by the

Archimedean Property). Now, for all n ≥ N , we have:

n ≥ N >
3

ϵ
− 2 =⇒ n+ 2 >

3

ϵ
=⇒ 3

n+ 2
< ϵ

Since 3
n+2

> 0, this means
∣∣2n+1
n+2

− 2
∣∣ = 3

n+2
< ϵ. This is equivalent to 2 − ϵ < 2n+1

n+2
< 2 + ϵ.

This completes the proof. 2

Exercise 9 Mathematical Induction

For n ∈ N , define two properties: Pn : 3 | (4n − 1) and Qn : 3 | (4n + 1). 1) Prove that for

any n ∈ N,Pn =⇒ Pn+1 and Qn =⇒ Qn+1. 2) Prove that Pn is true for any n ∈ N . 3) What

can be concluded about the assertion: ∃n0 ∈ N,∀n ∈ N, n0 ≥ n =⇒ Qn?

Solution. 1) Inductive Steps:

� For Pn =⇒ Pn+1: Assume Pn is true: 4n − 1 = 3k.

4n+1 − 1 = 4 · 4n − 1

= 4(3k + 1)− 1

= 12k + 4− 1

= 12k + 3

= 3(4k + 1)

So Pn+1 is true.

� For Qn =⇒ Qn+1: Assume Qn is true: 4n + 1 = 3m.

4n+1 + 1 = 4 · 4n + 1

= 4(3m− 1) + 1

= 12m− 4 + 1

= 12m− 3

= 3(4m− 1)

So Qn+1 is true.

2) Proof that Pn is true for all n ∈ N :

� Base Case (n=0): 40 − 1 = 1− 1 = 0. Since 3 | 0, P0 is true.

� Inductive Step: Shown in part (1).
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� By mathematical induction, Pn is true for all n ∈ N .

3) The assertion ∃n0 ∈ N,∀n ∈ N, n0 ≥ n =⇒ Qn is false.

� Check small values: Q0 : 4
0 + 1 = 2 (not divisible by 3), Q1 : 4 + 1 = 5 (not divisible by

3), Q2 : 16 + 1 = 17 (not divisible by 3).

� The base case Q0 is false. The implication Qn =⇒ Qn+1 is valid, but it only propagates

truth. Since the foundation (Q0) is false, Qn is false for all n ∈ N .

� Therefore, there does not exist any n0 for which Qn is true for all n ≤ n0.

2

Exercise 10 Let P,Q,R be three propositions. Simplify the following propositions: 1) (P ∧
Q) ∨ (P ∧ Q̄)
2) (P ∧Q) ∨ (P ∧ Q̄ ∧R)
3) (P ⇒ Q) ∧ (P ⇒ Q̄)

4) (P ⇒ Q) ∧ (P̄ ⇒ Q)

5) (P ⇒ Q) ∨ (P ⇒ Q̄)

6) (P ⇒ Q) ∨ (P̄ ⇒ Q)

Solution.

1) (P ∧Q) ∨ (P ∧ Q̄) = P ∧ (Q ∨ Q̄) = P ∧ 1 = P

2) (P ∧Q) ∨ (P ∧ Q̄ ∧R) ⇐⇒ P ∧ (Q ∨ (Q̄ ∧R)) ⇐⇒ P ∧ ((Q ∨ Q̄) ∧ (Q ∨R))
⇐⇒ P ∧ (1 ∧ (Q ∨R)) ⇐⇒ P ∧ (Q ∨R)
3) (P ⇒ Q) ∧ (P ⇒ Q̄) ⇐⇒ (P ⇒ Q ∧ Q̄) ⇐⇒ (P ⇒ 0) = P̄

4) (P ⇒ Q) ∧ (P̄ ⇒ Q) ⇐⇒ (P̄ ∨Q) ∧ (P ∨Q) ⇐⇒ (P̄ ∧ P ) ∨Q⇐⇒ 0 ∨Q = Q

5) (P ⇒ Q) ∨ (P ⇒ Q̄) ⇐⇒ (P̄ ∨Q) ∨ (P̄ ∨ Q̄) ⇐⇒ P̄ ∨ (Q ∨ Q̄) ⇐⇒ P̄ ∨ 1 = 1

6) (P ⇒ Q) ∨ (P̄ ⇒ Q) ⇐⇒ (P̄ ∨Q) ∨ (P ∨Q) ⇐⇒ (P̄ ∨ P ) ∨ (Q ∨Q) ⇐⇒ 1 ∨Q⇐⇒ 1 2

Exercise 11 Let P,Q be two propositions. Show that:

1) (P ⇒ Q) ⇔ (P ∧ Q̄⇒ P̄ )

2) (P ⇒ Q) ⇔ (P ∧ Q̄⇒ Q)

3) (P ⇒ Q) ⇔ (P ∧ Q̄⇒ R ∧ R̄)
4) (P ⇒ Q ∨R) ⇔ (P ∧ Q̄⇒ R)

5) (P ∧Q⇒ R) ⇔ (P ⇒ (Q⇒ R))

Solution.

1) (P ∧ Q̄⇒ P̄ ) ⇐⇒ (P ∧ Q̄) ∨ P̄ ⇐⇒ (P̄ ∨Q) ∨ P̄ ⇐⇒ P̄ ∨Q⇐⇒ P ⇒ Q

2) (P ∧ Q̄⇒ Q) ⇐⇒ (P ∧ Q̄) ∨Q⇐⇒ (P̄ ∨Q) ∨Q⇐⇒ P̄ ∨Q⇐⇒ P ⇒ Q

3) (P ∧ Q̄⇒ R ∧ R̄) ⇐⇒ (P ∧ Q̄) ∨ (R ∧ R̄) ⇐⇒ (P̄ ∨Q) ∨ 0 ⇐⇒ P̄ ∨Q⇐⇒ P ⇒ Q

4) (P ∧ Q̄⇒ R) ⇐⇒ (P ∧ Q̄) ∨R ⇐⇒ (P̄ ∨Q) ∨R ⇐⇒ P̄ ∨ (Q ∨R) ⇐⇒ P ⇒ (Q ∨R)
5) (P ⇒ (Q⇒ R)) ⇐⇒ P̄ ∨ (Q̄∨R) ⇐⇒ (P̄ ∨ Q̄)∨R ⇐⇒ (P ∧Q)∨R ⇐⇒ (P ∧Q) ⇒ R 2
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Exercise 12 Write the negation of the following propositions:

1) ∀x ∈ R,∃y ∈ R, x+ y = 0

2) ∃M ∈ R, ∀x ∈ R, f(x) ≤M

3) ∀ε > 0, ∃η > 0, ∀x ∈ R, |x− a| < η ⇒ |f(x)− f(a)| < ε

4) ∀x ∈ R,∀y ∈ R, (x ≤ y ⇒ f(x) ≤ f(y))

5) ∀x ∈ R,∀y ∈ R, x ̸= y ⇒ f(x) ̸= f(y)

Solution.

1) ∃x ∈ R, ∀y ∈ R, x+ y ̸= 0

2) ∀M ∈ R, ∃x ∈ R, f(x) > M

3) ∃ε > 0,∀η > 0,∃x ∈ R, |x− a| < η ∧ |f(x)− f(a)| ≥ ε

4) ∃x ∈ R, ∃y ∈ R, (x ≤ y ∧ f(x) > f(y))

5) ∃x ∈ R, ∃y ∈ R, x ̸= y ∧ f(x) = f(y) 2

Exercise 13 Show by recurrence that:

1) ∀n ∈ N∗,
∑n

k=1 k
2 = n(n+1)(2n+1)

6

2) ∀n ∈ N∗,
∑n

k=1 k
3 =

(
n(n+1)

2

)2
3) ∀n ∈ N, 32n+1 + 24n+2 is divisible by 7

4) ∀n ∈ N, 10n + 3× 4n+2 + 5 is divisible by 9

Solution.

1) For n = 1,
∑1

k=1 k
2 = 1 and 1(1+1)(2+1)

6
= 6

6
= 1, so P (1) is true.

Let n ∈ N∗, assume that P (n) is true, i.e.,
∑n

k=1 k
2 = n(n+1)(2n+1)

6
, let’s show that P (n + 1)

is true.

We have

n+1∑
k=1

k2 =
n∑

k=1

k2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6
=

(n+ 1)(n(2n+ 1) + 6(n+ 1))

6

=
(n+ 1)(2n2 + 7n+ 6)

6
=

(n+ 1)(n+ 2)(2n+ 3)

6
,

so P (n+ 1) is true.

By recurrence, ∀n ∈ N∗, P (n) is true.

2) For n = 1,
∑1

k=1 k
3 = 1 and

(
1(1+1)

2

)2
= 1, so P (1) is true.

Let n ∈ N∗, assume that P (n) is true, i.e.,
∑n

k=1 k
3 =

(
n(n+1)

2

)2
, let’s show that P (n+ 1) is

true.
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We have

n+1∑
k=1

k3 =
n∑

k=1

k3 + (n+ 1)3 =

(
n(n+ 1)

2

)2

+ (n+ 1)3

=
n2(n+ 1)2 + 4(n+ 1)3

4
=

(n+ 1)2(n2 + 4n+ 4)

4

=
(n+ 1)2(n+ 2)2

4
=

(
(n+ 1)(n+ 2)

2

)2

,

so P (n+ 1) is true.

By recurrence, ∀n ∈ N∗, P (n) is true.

3) For n = 0, 31 + 22 = 3 + 4 = 7 divisible by 7, so P (0) is true.

Let n ∈ N , assume that P (n) is true, i.e., 7 | 32n+1 + 24n+2, let’s show that P (n+ 1) is true.

We have

32(n+1)+1 + 24(n+1)+2 = 32n+3 + 24n+6 = 9× 32n+1 + 16× 24n+2

= 9(32n+1 + 24n+2) + 7× 24n+2,

so 7 | 32n+3 + 24n+6, so P (n+ 1) is true.

By recurrence, ∀n ∈ N,P (n) is true.

4) For n = 0, 100 + 3× 42 + 5 = 1 + 48 + 5 = 54 divisible by 9, so P (0) is true.

Let n ∈ N , assume that P (n) is true, i.e., 9 | 10n + 3× 4n+2 + 5, let’s show that P (n+ 1) is

true.

We have 1

0n+1 + 3× 4n+3 + 5 = 10× 10n + 12× 4n+2 + 5

= 10(10n + 3× 4n+2 + 5)− 18× 4n+2 − 45

= 10(10n + 3× 4n+2 + 5)− 9(2× 4n+2 + 5),

so 9 | 10n+1 + 3× 4n+3 + 5, so P (n+ 1) is true.

By recurrence, ∀n ∈ N,P (n) is true. 2
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