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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

V.1 Introduction

On définit les systémes a plusieurs degrés de libertés par les systemes qui nécessitent
plusieurs coordonnées indépendantes pour spécifier leurs. Le nombre de degré de liberté
détermine les modes propres.

V.2 Systémes libres a deux degrés de liberté

Les systémes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions
sont appelés systemes a deux degrés de liberté, les systémes a deux degrés de liberté sont
constitués de deux systémes a un degré de liberté couplé.

V.2.1 Types de couplage

Il existe trois types de couplage : par élasticité, inertiel et visqueux.

V.2.1.1 Couplage Elastique :

Le couplage dans les systemes mécaniques est assuré par ¢élasticité (un ressort). Dans les
systemes ¢lectriques, on trouve les circuits couplés par capacité, ce qui est €équivalent au

couplage par élasticité.

Ki K K>
mi mo
L, L,
X1 X2

M M:

Figure V.1 Exemples des systémes a 2 DDL couplés par ¢lasticité
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

Les ¢équations différentielles correspondantes sont :

{ih + 284, + w?q; = a;1q;
4, + 284, + w?qy = a,q,

V.1
Tel que : a;x, et a,x;sont les termes de couplage. a; et a,sont des constantes.

V.2.1.2 Couplage Inertiel :

Le couplage dans les systémes mécaniques est assuré par inertie (une masse).

L

-y

M

592

M-

Figure V.2 Exemple d’un systeme a 2 DDL couplés par inertie

Les équations différentielles correspondantes sont :

{('h +26q; + 002(11 = b;q; (V.2)

Az + 284, + w*q, = baqy
Tel que : b;x, et b,x;sont les termes de couplage. b,et b,sont des constantes.
V.2.1.3 Couplage Visqueux :

Le couplage dans les systémes mécaniques est assuré par amortisseur. Dans les systemes

¢lectriques, on trouve les circuits couplés par inductance, ¢quivalents au couplage par inertie.
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

k1 (v k2
M 1 I M=
L, L,
X1 X2

M M:

Figure V.3 Couplage visqueux des différents systemes mécanique

Les équations différentielles correspondantes sont :

{th +28q; + w*q; = ¢4 Qq;
4z + 269, + (UZCIZ =Cqq

(V.3)
Tel que : ¢;X5 et c;x sont les termes de couplage. c;et cysont des constantes.

V.2.2 Equations différentielles du mouvement

Pour I’étude des systéemes a deux degrés de liberté, il est nécessaire d’écrire deux équations

différentielles du mouvement que I’on peut obtenir a partir des équations de Lagrange :
d ( oL ) ( oL ) —0

Jdt 044 dq,)
d ( oL ) ( oL ) —0

\az\ag,) ~\ag,) =

q1 et q, : les deux coordonnées généralisées qui caractérisent le systeme a deux degrés de

(V.4)

liberté.
Le Lagrangien est :

L=E.—Ep (V.5)
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

V.2.3 Méthode générale de résolution des équations de mouvement

Pour un systéme mécanique, la mise en équation du systéme couplé passe par la méthode a
suivre suivante :

1- On écrit les deux équations différentielles en fonction des coordonnées généralisées.

2- On fait I’hypothése que le systéme admet des solutions harmoniques. Ce qui signifie que le
systéme peut osciller avec la méme pulsation pour tous les oscillateurs.

3- La résolution des systemes d’équations permet d’obtenir deux pulsations particulicres w,et
w, : ce sont les pulsations propres.

4- On substitue ensuite w; dans l'une des deux équations et 1’on obtient le 1" mode propre.

péme

5- On substitue ensuite w, dans I'une des deux équations et I’on obtient le mode propre.

6- On €crit les deux solutions générales des ¢quations différentielles du mouvement.
V.2.4 Etude d’un systéme mécanique libre a deux degrés de liberté:

V.2.4.1 Systéme complexe (masses-ressorts) :

Soit le systéme mécanique représenté sur la figure V.4 et composé de deux oscillateurs
Harmoniques (m4,K; ) et (m,, K, ) couplés par un ressort de constante de raideur K. Les

deux masses sont supposées se déplacer sans frottement sur un plan horizontal et leurs

¢longations par rapport a leurs positions d’équilibre sont repérées par x; et X, .

Ki K>

X1 X2

Figure V.4 : Mouvement oscillatoire d’un systéme couplé a deux degré de liberté

Lorsque ce systéme est écarté de sa position d’équilibre puis abandonné a lui méme, il

effectue un mouvement vibratoire libre.
L’¢é ie cinéti d ttme E.: E. =1 <2 41 %2
énergie cinétique du systéme Ec: Ec = -m; X7 + S Mz X3

L’¢énergie potentielle du systéme E,: Ep = %lef + %K(xz —-x)%+ %KZ(—XZ)Z
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

Le Lagrangien du systéme s’écrit comme suit: L = E. — Ep

1 .1 2 2 2
L=Em1X1 +§m2x2 _Elel —EK(XZ —X4q) _EKZXZ

Les équations de Lagrange dans ce cas s’écrivent :
d ( oL ) ( JL ) _ 0
dt \9x, 0x,/)
d ( oL ) ( oL ) .
dt \ox, 0x,)
oL . d /0L .
(a_xl) - Mt = &(a_xl) - i

(ﬂ) = —(K, + K)x; + Kx,

0%
d(@L)_ ) :d(0L>_ .
dt\ax,) ~ M2¥2 T qrlax,) T M2
JdL
<a_X2) == _(Kz + K)XZ + KXl

Les équations décrivant la variation des élongations x, et x, en fonction du temps, s’écrivent
comme suit:

{mlil + (Kl + K)Xl - KXZ = 0
mziz‘l‘(Kz + K)Xz —_ KXl =0

Les termes : —Kx; et —KX, sont appelés : Termes de Couplage

On fait I’hypothése que le systéme admet des solutions harmoniques :

b '{Xl(t) = A; cos(wt+ ;) = ¥; = —w?x,
%,(t) = A, cos(wt + @) = %, = —w?x,

En remplagant les solutions dans le systéme différentiel. On obtient un systéme linéaire

suivant :

{_(,l)zmlil + (Kl + K)Xl - KXZ =0 = { (_ml(l)z + Kl + K)Xl - KXZ =0
_(Dzmziz‘l'(Kz + K)Xz — KX1 =0 —le + (—mz(l)z + Kz + K)Xz =0 "

(—m1m2 +K; +K —K )(xl) B <0>
—K —m,w? + K, + K/ \x,/ ~ \0
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

Le systeme admet des solutions non nulles si seulement si le déterminant =0

-m;w? + K; +K —K

AMw) =
(@) K —m,w? + K, + K

=0

Le déterminant A(w) est appelé déterminant caractéristique. L’équation A(w) = 0 est
appelée 1’équation caractéristique ou équation aux pulsations propres. Elle s’écrit
A((l)) =(K1 +K_m1(1)2) X (Kz +K_m2(l)2)_K2 = 0

ot — Q¢+ 03)w? + Q203(1 —K'?) =0

On définit les constantes suivantes comme suit:
K K K?

QZ :_1)'05 :_23 KIZ =
my mp (K1 +K)(K2+K)

K’ est appelée le coefficient du couplage

Les deux pulsations propres sont :

Q2+0% 1

w? = %_E\/mf —02)% + 4KQ2032
Q2+03 1

w3 = ITZJF E\/(Qi — 02)2 + 4KO202

La solution générale su systeme s’écrit sous la forme d’une superposition des deux modes
propres, comme suit :

{xl (t) = A; cos(wit+ @) + A, cos(w,t + @,)
X, (t) = B; cos(w;t + @) + B, cos(w,t + @)
A;,A 5, By, By, @1 et @, sont des constantes d’intégration déterminées a partir des

conditions initiales.

Afin de simplifier le nombre d’inconnu; On détermine les rapports d’amplitudes aux modes

A

w = wq, —

1 A,

propres: B,
W= Wy, —

B>

Dans le cas d’un systéme symétrique m; = m, = m et K; = K, = k, les relations (1)

deviennent :
{(—mooz + K+ K)X; — KXy = 0 e v v e e e e e e weee (1)
—Kx; + (—mw? + K+ K)X; = 0 ce ceecee v e e e e e e (2)
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

<—mu)2 +k+K —K ) (Xl) _ (O>
—K —mw? + K+ k/ \x, 0
Le systéme admet des solutions non nulles si seulement si le déterminant =0

A(u)) — |_m1(1)2 + Kl + K _K

=0
_K _mz(l)z + KZ + K|

Alw) = (mw?+k+K?-K>=0

—mw?+k+K=K 2 2
= = — =
{—mw2+k+K=—K 1= ¥z T

. K ,k 2K
Les deux pulsations propres sont : w; = \/% et w, = J;n

= Les solutions du systéme :

La solution générale s’écrit alors comme une combinaison linéaire des deux solutions.

{xl (t) = A; sin(w,t + @;) + By sin(w,t + @,)
X, (t) = A, sin(w 1t + @1) + By sin(w,t + @3)

V.2.4.2 Etude des modes propres
* Premier mode : on remplace dans (1) ou (2) par w? = %
On obtient apres calcul : x, = x4

Danscemode :w=w; =X, =%X; 2 A; =A, = Vl(i), \71 est le 1°" vecteur propre.
K K K2
%NVVV\H mi WW—( ma WNE

L. L

X1 X2

Ki K K2
g—\/\/\/\/\/\/\ﬁ m VVVWVVAW\A me WV\NV‘fé
L L
K1 K K2
%’\/\MN\«-‘ mi MMM me WNV—%
| ]

Figure V.5 : Etat du systéme pour le premier mode. « En phase »
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

. X A . k A
Dans ce mode les deux masses oscillent a la méme pulsation w; = / — avec la méme

amplitude A, en phase.

» Deuxiéme mode : on remplace dans (1) ou (2) par w3 =

On obtient aprés calcul : x, = —x;

Dans ce mode :w = w, @ X, = —X; = B; = —-B, =V, (_11), V, est le 2°™¢€ vecteur propre.

Ki
§—\/\/\/\/\/V\/— mi

K

VVVVAVVAA

k+2K

K2
me —\/\/\/\/\/\/\/—é

|

X1

K1 K K2
ngxw mi WAAN\r mo WWWE
Pl

K

L

-

mi

WWW

mz

A AMAA

L,

<

Figure V.6 : Etat du systéme pour le deuxiéme mode.

« En opposition de phase »

) . n . k+2K .
Dans ce mode les deux masses oscillent a la méme pulsation w, = —— avec la méme

amplitude B, en opposition de phase.

Donc les solutions générales deviennent alors :

{xl (t) = Acos(wit+ @) + Bcos(w,t + ;)
X, (t) = Acos(wit + @1) — Bcos(w,t + @5)

Ou les constantes A, B, ¢4 et ¢, seront définies par les conditions initiales.

V.2.4.3 Phénoméne de battement :

Les solutions générales sont alors données par:

{xl (t) = Acos(w t + 1) + Bcos(w,t + ;)
X, (t) = Acos(wit + @1) — Bcos(w,t + @5)
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Chapitre V Oscillation des systémes a plusieurs degrés de liberté

Pour des conditions initiales bien choisies, on peut écrire :

Wz — W w; + w
X1 (t) =A (COS wqt + COSQ)Zt) = 2A cos (% t) coS (% t)
Wy — W Wy +w
X,(t) = A (cos w;t — cosw,t) = 2A cos (% t) sin (% t)

Lorsque le couplage est faible (K faible), les pulsations propres des deux oscillateurs (w, et
w,) sont voisines (w; = w, = Aw = w, — w, est faible), il se produit un phénoméne de

battement. Les deux oscillateurs se transmettent de 1’énergie entre eux et vibres avec une

pulsation w égal a la moyenne des deux pulsations propres w = (wzzﬂ avec une période
2m 4 . . ) . Wo—
égalea T = — = . Tandis que la pulsation du battement est égale & wg = (@amw1)
w (V) +(J.)1 2
4T

avec une période égale a Tg =

Wy —Wq

Figure V.7 : Phénomene de battements ou Modulation d’amplitude
Une période de battement est donc le temps que fait I’énergie de vibration dans son

aller-retour complet entre les deux oscillateurs.
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

V.3 Oscillations forcées des systémes a deux degrés de liberté
V.3.1 Equations de Lagrange :

Les équations différentielles du mouvement oscillatoire forcé des systemes a deux degrés de

liberté sont :

d (0L dL oD
E(a(h) - 0q1 " 041 '
d (0L adL dD
E<a‘b) - 99, " 09, = fa,

(V.6)

F,, et F,, sont les forces généralisées conjuguees des coordonnées généralisé€es respectives gy

et q;.

Dans le cas ou la coordonné est une rotation (q = 6) la force F(t) est remplacée par le

moment de cette force M (F (t))

V.3.2 Equation différentielle d’un systéme forcé a deux degrés de liberté :

Soit le systéme a deux degrés de liberté (x4, x,) de la figure V.1, composé de : masses,

ressorts et amortisseurs, dont leurs caractéristiques sont montrées sur la figure. Ce systéme est

soumis a une force extérieure Fg, = F = Focos(lt . K: ressort de couplage.

o F(t) o
K T
§ S LE- W =l é
| |

x1(t) x2(t)

Figure V.8 Systeme a deux DDL couplé par un ressort de couplage

Les équations de Lagrange s’écrivent dans ce cas :

d /oLy dL 4D

&(axl) “x Tox, F@
d /oLy 9L aD
&(axz) T, Tox,

. e \ 1. 1.
L’énergie cinétique du systeme E.: E; = S My X2 + My X3
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

L’énergie potentielle du systéme E: Ep = %kxf + %K(x2 —-x)% + %k(—xz)2

1 2 1 2 1 2
EP == Ekxl +§K(X1 _Xz) +§kX2

L’énergie de dissipation Ep: Ep = %oo'(f + %ax%
D’ou le Lagrangien : L = E. — Ep

1 .2 .2
L=-m;X{ +-m,X5 —

1 2 1 2 1 2
: : Skt ==K —x2)? = 31

2

Les équations de Lagrange dans ce cas s’écrivent :

d /oLy oL 4D

{ dt (axl) R
d/ oLy dL aD

\ E(axz) Tox, 0%,

Les équations décrivant la variation des ¢longations X, et x, en fonction du temps, s’écrivent
comme suit:

{mlil + (k + K)Xl + 0(5(1 - KX2 == F
mzxz + (k + K)XZ + a).(z - KXl - O

V.3.3 Etude du régime permanent sinusoidal (Résolution des d’équations différentielles):
La solution générale de systeme d’équations différentielles est égale a la solution de la
solution du systéme homogene et d’une solution particuliére. La solution de 1’équation
homogene, en raison de 1’amortissement, tend vers zéro lorsque le temps augmente. Lorsque

le régime permanent s’établit, la solution devient égale a la solution permanente et s’écrit

x.(t) = Xy, (t) = X cos(Qt + ¢)
alors : {Xz(t) = X, (8) = X, cos(t + ;)

Pour calculer les amplitudes X; et X, , ainsi que les phases ¢, et ¢, utilisons les méthodes
des nombres complexes.

On peut ainsi écrire :

X, (£) = X, e/ @01 = X el 5 g, (1) = —Q2X, el

X, (1) = X,el@+¢) = X ol = % (1) = —02X, el
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

V.3.4 Calcul de X; et X, dans le cas de faible amortissement :
V.3.4.1 Amortissement négligeable :

Considérons d’abord le cas d’un amortissement suffisamment faible pour que 1’on puisse

considérer que a = 0. Le systéme d’équations différentielles s’écrit alors :

{mlkl + (k + K)Xl - KX2 = F(t)
mziz + (k+ K)XZ - I(Xl =0

. Kk /k 2K ) . .
Les pulsations w; = \/% et w, = ;—m sont les pulsations propres calculées au chapitre
précédent.

F(t) = FycosQt = Fyel™

{ —m; %X, + (k + K)X; — KX, = F,el®
—m,0%X, + (k + K)X, — KX; =0

{[(k+K)—man]x_1—Kx_z=Fo
—KX; +[ (k+K)—m,02]X, =0

Les solutions de ce systéme sont :

— F Qi — Q%)
1" m (w2 — 02) (w3 — 02)

—  KF, 1
27 m? (w? - 02) (w2 - 02)

. K
La valeur de la pulsation O est: Q = %K

X; = x e et X; = x,e/ = ¢, et ¢, peuvent avoir que des valeurs 0 et/ou 7, vu que la

partie imaginaire de X, et X, est nulle.

Im(X;)
Re(Xy)

Sachant que : X; = |X_1| et ¢, = —arctg

On aura au final : les amplitudes des déplacements X; et X,
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

X _Fo |QE\_QZ|
T m |w? - 02] |w? — 02|
KF 1
X2= 0

m |wf — 02| w3 — Q2
V.3.5 Les variations des amplitudes X; et X, :
La variation des amplitudes X; et X, sont en fonction de la pulsation de la force excitatrice Q

illustrée sur les figures V.9 et V.10.

)

Figure V.9 : Variation de X; en fonction de ()

X1

’ Q

X2

W Qa w: 0

Figure V.10 : Variation de X, en fonction de ()
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

_Fo A

T m |w?]]wd]

KF,
m|wf ||} |

= 0=0=X, et X, =

= On note que le phénomene de résonance se produit pour X; comme pour X, lorsque la
pulsation d’excitation () est €gale a [’'une des pulsations propres w; et w, du systéme
(lorsque Q = w, et 1 = w, = Résonance).
O = w; = wg; (Appelée la premicre pulsation de résonance)
Q = w; = wg, (Appelée la deuxieme pulsation de résonance)

= Lorsque I’amortissement €tant tres faible, les amplitudes a la résonance sont tres
importantes.

= Lorsque la pulsation () devient trés grande, ces amplitudes tendent vers zéro.

=  Lorsque ) = Q= Les amplitudes X, est égale a zéro (A; = 0) = Q,: est appelée

Pulsation d’antirésonance.

V.3.6 Application :

Soit le systéeme mécanique ci-dessous, composé de : masses, ressorts et amortisseurs,
dont leurs caractéristiques sont montrées sur la figure. Ce systeme est soumis a une force

extérieure F(t) = KAcosQt

F(v)
k k a
. o E
L L
X1 X2

Figure V.11: Mouvement oscillatoire couplés de deux masses

1- Trouver I’énergie cinétique E., I’énergie potentielleE, et la fonction de dissipation Ep.
2- Etablir 1’équation différentielle du mouvement.

3- Trouver la réponse en régime permanant.
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

4- Si o = 0, pour quelle valeur de () le systéme entre en résonance. Donner dans ce cas la

condition pour que la masse excitée reste immobile ?
Solution :
1- L’¢énergie cinétique E., 1’énergie potentielleE,. et la fonction de dissipation Ep :
L>énergie cinétique du systéme E.: E. = %mx% + %mx%
L’énergie potentielle du systéme E,: Ep = %kxf + %k(x1 — X,)?
L’¢énergie de dissipation Ep: Ep = %ook%
Le Lagrangien : L = E. — Ep

1 . .2 2 2

L= 5 MX] + > Mk —Ekx1 - Ek(x1 —X5)
2- L’équation différentielle du mouvement :
Les équations de Lagrange s’écrivent dans ce cas :

d ( oL ) oL F(O
J dt\ox,/ ox,

d ( oL ) oL dD
\ar 3%,

- +—=0
aXZ aXZ
Les équations décrivant la variation des €longations X, et X, en fonction du temps, s’écrivent

comme Suit:

kK
{m&+km+k@1—h):F@) Xt Xt (3~ %) = F(Y

mX, —k(x; —x,)+ax, =0 k k o
2 (1 2) 2 Xz+_X2——X1+_5(2=O
m m m

3- La résolution en régime permanant, en écriture complexe :
X1 (t) = Xlej(ﬂt+¢1) == X—lej'Qt = il (t) = _sz_lejﬂt

Xz(t) = Xzej(ﬂt+¢1) == X_Zeth = Xz (t) = _sz_zejat

02 +=— — o\ [ka
m m <_1> —|m

k
-— - +—+jo— X2 0
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

On calcul le déterminant det(Q):

2k k o
det() = 0 = (—92 + —) (—92 P jn—) -
m m m

k2

mz =0

X, = ! ( Qz+k+'ﬂa>
17 det m ] m

o 1 (k2
2= Jet\m2 %

4- Résolution des L’équation différentielle du mouvement pour ¢ = 0 :

Calcul des pulsations pour a = 0
2k k k?2
det(2) =0 = (—QZ +—) (—QZ +—) -—=0
m m/ m

3k k2
Q-0+ —=0
m m?2

W = %(3—\/3)

L’équation admet deux solutions : K
w, = — (3+4+/5)
2m

Pour que la masse soit immobile :

1
det

1:

(02 4+ +ja)=0cta=0>-02+-=0 = ooA=\/£
m m m m

V.4 Oscillations de systeme mécaniques a N degrés de liberté

V.4.1 définition

Un systéme oscillateur présente N degrés de liberté s'il nécessite N paramétres pour définir sa
position a un instant t. Nous considérerons ici des systémes linéaires dont la mise en équation
aboutit a un systeme de N équations différentielles linéaires. Le nombre de degrés de liberté
dépend de la structure du systéme. Le nombre de degrés de liberté dépend de la structure

du systeme. S'il s'agit d'un :

= gsystéme a N particules, les mouvements sont des translations et le nombre maximum

de degrés de liberté sera égal a 3N.
= Si le systéme est constitu¢ de N corps étendus, il faut ajouter les rotations et le nombre
maximum de degrés de liberté sera égal a 6N.
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

V.4.2 Méthode de Lagrange de mise en équation de systéme a N degrés de liberté

Considérons les cas de systémes conservatifs non excités (€tape de toute fagon utile pour
rechercher les modes et les fréquences propres). Soient qy, ...., gy les N coordonnées
indépendantes qui définissent la position du systéme a un instant donné, E_1'énergie

cinétique, E,, I'énergie potentielle exprimée a I'aide des g; et qy. L'équation

de Lagrange :

d 0L\ 0L _

E(a_qi) “30=0 (=120 (V.7)

Dans le cas général d’un systéme forcé a NDDL, il y’aura autant d’équation de Lagrange,

donc N équations de Lagrange.

Systéme a NDDL = Coordonnées q;(i = 1,2, ... .... N).

Dans ce cas les équations de Lagrange s’écrivent :
d (0L oL
—|==—)—=—=F,(t i=12.....N V.8
dt (aqi) ag, fm@® ) (V-8)

Dans le cas ou la coordonné est une rotation (q = 6) la force F,(t) est remplacée par le

moment de cette force M (F; (t)).

V.4.3 Mise en équation de systéme a N degrés de liberté
V.4.3.1 Cas général de N degrés de liberté

Les systemes d'équations a résoudre sont de la forme :

[m][X] + [R][X] + [K][X] = [F]coswt (V.9)

Ou [K] représentent une matrice carrée N X N et [x] un vecteur colonne.
Pour les systéemes libres non amortis a N degrés de liberté

[m][X] + [K][x] = 0
I1 apparait donc que le nombre de fréquences propres est égal au nombre de degrés de liberteé.
V.4.3.2 Modes propres de vibration d’un systéme mécanique a trois degrés de liberté
Considérons le systéme mécanique de trois masses my, m, et ms attachées entre elles

horizontalement par des ressorts K4, K,, K5 et K, (voire la figure V.12).
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

Les positions des masses par rapport a leurs positions d’équilibre sont données par les

variables X4, X, et x3. Le mouvement est dans ce cas exclusivement sur une droite.

Ki K2 K3 K4
WMW
L L L

X1 X2 X3

Figure V.12: Mouvement oscillatoire couplés de trois masses
Le systéme d’équations de mouvement du systéme s’écrit sous la forme suivante :

mlil + (Kl + KZ)XI - KZXZ = 0
mziz + (KZ + K3)X2 - K2X1 - K3X3 = 0
m35&3 + (K3 + K4)X3 - K3X2 = 0

Ce qui peut étre écrit sous la forme matricielle suivante :

my 0 0 Xl K1 + Kz _KZ 0 X1 0
( 0 m2 0 )(X2>+< _KZ KZ + K3 _K3 )(XZ) = (0)
0 O m3 i3 O —K3 K3 + K4 X3 0

Ou encore sous une forme plus condensée :

M + Kx = 0 (V.10)

Ou

m, 0 O %, K, +K, -K, 0 X
M=(0 m, 0>,X=(X2>,K=< _K2 K2+K3 _K3 )etx=<xz>
0 O m3 i3 O _K3 K3 + K4, X3

Il est possible de récrire 1’équation ci-dessus sous forme
X+MKx=0 (V.11)
Ou M1 est la matrice inverse de M
En posant A = M~1K , I’équation (2) devient :
X+Ax=0 (V.12)
Si la matrice A est diagonalisable (ce qui est vrai dans notre cas), celle-ci pourrait se mettre
sous la forme : A = PDP~1
Ou P est une matrice dite de passage construite a partir des vecteurs propres de A

comme étant ses colonnes.
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

D une matrice diagonale dont les ¢léments sont les valeurs propres de la matrice A.
L’¢équation (3) devient alors :
X+ PDP 1x =0 (V.13)

Multiplions I’équation ci-dessus par P~1:
P~1x+P71PDP1x =0 (V.14)

Ou encore en faisant le changement de variable suivant :

U=Pkx (V.15)
Uq
Avec U = (uz), nous obtenons 1’équation suivante :
usz
U+DU=0 (V.16)

Cette équation est tres intéressante car elle représente un systéme d’équations différentielles
découplé puisqu’elle fait intervenir une matrice diagonale. En effet, I’équation ci-dessus peut
se mettre sous une forme plus explicite :

ﬁl + V1u1 = O

ﬁz + V2U2 ES 0

ﬁ3 + VaUz = 0
Ou v4, v, et vz sont appelées coordonnées normales puisqu’elles permettent de découpler un

systeme linéaire d’équations différentielles.

Elles représentent des mouvements harmoniques simples du systéme avec trois pulsations

d’oscillations : w; = /vy, W, =+/V, et w3 = ,/Vv3 ; ¢’est a dire les modes propres du
systeme.

Cependant, il est intéressant d’avoir I’évolution des coordonnées x;, X, et X3.
Pour cela, on utilise I’équation :

x = PU (V.17)
X1 Pi1 P Pig\ /ua
Xo | =( P21 Pz Prg || Uz
X3 P31 Py Pi3/ \Uz

X1 (t) = Piju; + Pjpu; + Pigug
X2 (t) = Pquy + Pyru, + Przus
x3(t) = P3yu; + P3pu; + Pagug

Ce qui donne
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

Les mouvements des masses du systeme sont finalement des combinaisons lin€aires de
mouvements harmoniques simples (modes propres du systeme) avec les pulsations
correspondantes. Ces résultats nous ramene impérativement a diagonaliser la matrice
A afin que I’étude du mouvement des masses soit compleétement établie.

En guise d’exemple d’application, prenons le cas du systéme mécanique ci-dessus

avec des masses et des ressorts égaux. La matrice correspondante s’écrit sous la forme

k(2 -1 0
A=—|-1 2 -1
M\o -1 2

11 est facile de vérifier que les valeurs propres de cette matrice et partant les pulsations propres
du systéme sont données par :

]
V1=(2—\/§)%zw1= (z—x/i)g

{v, =2 2 X
= e — J—
v, — = —

K K
Lv3=(2+\/5)a=>m3= (ZJ”/E)E

Avec les vecteurs propres correspondants :

1 1 1
v, = (ﬁ),vz = < 0 >etv3 = <—\/§>
1 -1 1

La matrice de passage s’écrit donc sous la forme :

1 V2 1
P=|1 0 -1
1 =2 1

Il serait utile de donner une interprétation des valeurs des vecteurs propres ci- dessus.
En effet, chaque vecteur propre correspond a un mode de vibration, et plus précisément,

chaque composante du vecteur donne le rapport d’amplitude de mouvement des différentes
1

masses dans un mode donné. C’est ainsi que le vecteur v; = (ﬁ), correspondant a la
1
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pulsation propre w; = [(2 —2) -, indique que les trois masses oscillent toutes les trois en

phase (les signes des composantes sont positives) avec la deuxiéme masse qui a une

amplitude V2 fois plus grande que les amplitudes des autres masses.

Les solutions générales de mouvement des masses s’écrivent :

X1 1 1 1 Uy
(2)-(2 5, 2
X3 1 -1 1 Uz

X, (t) = C; cos(wit+ @;) + C, cos( w it + @,) + C5 cos( wzt + @3)

%X, (t) = V2C; cos( it + @1) — V2C5 cos( w3t + @)

X3(t) = C; cos(wit+ @1) — C, cos( wit + @) + C5 cos( w3t + ¢3)
Cy,Cy,C3, 04, @, et 3 sont des constantes a définir avec les conditions initiales.

-Les formes des solutions indiquent que les masses, dans le premier mode, oscillent en phase

avec les mémes amplitudes pour la premiére et la troisieme masse, alors que celle au milieu a

une amplitude V2 fois plus grande.

-Dans le deuxiéme mode, la masse au milieu est immobile, alors que les deux autres masses

oscillent en opposition de phase mais avec les mémes amplitudes.

-Dans le troisieme mode, la premiére et la troisiéme masse oscillent en phase avec la méme
amplitude mais en opposition de phase avec la masse au milieu qui elle oscille avec une
amplitude V2 fois plus grande.

De cette fagon, tous les aspects du mouvement des masses du systéme sont établis ; il ne reste
qu’appliquer les conditions initiales (préparation du systéme) et voir comment le systéme
évoluera. En effet, cette procédure peut étre facilement appliquée a un systéme de plusieurs
degrés de liberté. 11 suffit juste de pouvoir diagonaliser des matrices de plus en plus grandes,

ce qui nécessite le recours a des méthodes numériques bien établies.
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V.5 Exercices résolus

Exercice N°1 :

Soit le systéme mécanique représenté sur la figure ci- §-\/\/\/l\(/l\/\/\r K2
m mez
contre. Les deux masses font des oscillations sur 1’axe
) L, L,
horizontal. X1 X2

1- Quel est le nombre de degré de liberté ? et donner le type du couplage ?
2- Calculer I’énergie cinétique, potentielle du systeme.

3-PourK; =K, =K et m; = m, m, = 2m, et en utilisant la formule de Lagrange établir les

équations différentielles du mouvement, et écrire les deux équations sous forme d’une
. X1\ — 0
matrice M (XZ) = (0)
4- Déduire les pulsations propres du systéme.

Solution N°1 :

1- Le nombre de degré de liberté du systeme est de 2, couplage €lastique.

2- Energie cinétique et potentielle :
= Energie cinétique E. :

1 . 1 .
EC =Em1X% +Em2X%

» L’¢nergie potentielle du systeéme Ep:

1,1 ,
Ep = EK1X1 +§K2(X1 —X3)

Donc le lagrangienest: L = E. — Ep

1, 1 5, 1. 5 2
L= > Mq X +Em2x2 _Elel _EKZ(Xl —Xy)

3- Les équations différentielles :

d(aL) (E)L)_O
dt \dx; 0xq B

d(aL) <6L>_0
dt \9x, 0x,)
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<6L)_ . jd(@L)_ .
o) T T qe\ax, ) T M

oL 1
<—) = —(K; + Kp)x; + EKZXZ

0%
d(aL)_ N d(aL)_ .
dt\ax,) ~ M2¥2 T qlax,) T M2
JoL 1
(a_xz) = _K2X2 + Eszl

{mlil + (Kl + KZ)XI — K2X2 =0
mziz + K2X2 - K2X1 = 0

mj&l + 2KX1 - KXZ =0

En remplagant les constantes, on trouve : {mez +Kx, —Kx; =0

On fait I’hypothése que le systéme admet des solutions harmoniques :

Do '{Xl(t) = A; sin(wt + @) = ¥, = —w?x,
’ Xz(t) - AZ Sln(wt + (pz) = XZ == _(L)ZXZ

{—wzmxl + 2Kx; —Kx, =0 @{ (—w?m + 2K)x; —Kx, =0
—Kx; — 2w?mx, + Kx, =0 —Kx; + (—2w?’m + K)x, =0

(—oozm + 2K —K ) (Xl) _ (0)
—K —2w?m + K/ \x, 0

On calcul le déterminant A(w):

—K —2w?’m + K

Alw) = (—o’m+ 2K) X (—2w?m +K) —K? =0
Alw) = 2m?w* — 3mKw? + K2 =0

Le terme de plus basse fréquence correspondant a la pulsation w4 est appelé le fondamental.

L’autre terme de pulsation w,, est appelé harmonique.

. K / K
Les deux pulsations propres sont : w; = \/; et wp = |—

Et les solutions s’écrit comme :

{xl (t) = A; cos(wit+ @) + A, cos(w,t + @,)
X, (t) = B; cos(w;t + @) + B, cos(w,t + @)
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A, A, By, By, g et @, sont des constantes d’intégration déterminées a partir des

conditions initiales.
Le systéme oscille dans le premier mode (fondamental), les solutions s’écrivent :

x1(t) = Ay cos(wit+ @q)
X, (t) = By cos(w 1t + @4)
Si le systeme oscille dans le second mode (harmonique), les solutions s’écrivent :
X1 (t) = A, cos(w,t + @3)
X (t) = By cos(w,t + @3)

Exercice N°2 :

On considere le systéme de la figure ci-contre I

constitué de deux pendules simples identiques de
masse m et de longueur L, fixés a un bati fixe
horizontal. Un ressort de raideur K assure le couplage
entre les deux pendules. A I’équilibre les deux

pendules sont verticaux.

1- Décrire le systeme et donner le type du couplage ?

2- Calculer I’énergies cinétique E, et potentielle Ep du systéme.

3- Trouver I’équation différentielle du mouvement.

4- Déterminer les pulsations propres du systéme et Calculer les modes d’oscillations.
5- Calculer les rapports des amplitudes dans les modes.

6- Calculer 6 et 6, , pour les conditions initiales suivantes :

01 (t=0)=100,0,(t=0)=0etb; (t=0)=0,(t=0)=0

Solution N°2 :

1- Systéme oscillatoire a 2 ddl (x4, x5), le type du couplage : couplage élastique.
2- Calcul des énergies :
L’énergie cinétiqueE. :

1 ) 1 .
EC = EmLzef +EmL29§
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L’¢énergie cinétique Ep:
1 1
Ep = E(KLZ + mgL)6? + > (KL? + mgL)03 — K1?0,0,
Le lagrangien L dans le cas des oscillations de faible amplitude :
1 ) 1 . 1 1
L= EmLzei + EmLZeg -5 (KL? + mgL)0? — > (KL? + mgL)03 + KL?8,8,

3- I’équation différentielle du mouvement :

On remarque bien deux coordonnées généralisées qui décrit le mouvement donc on aura deux

¢quations de Lagrange :
d [/ dL <6L> _ 0
de\ a9, 00,/
d [/ dL ( oL ) _ 0
dt\ a6, 00,/
oL . d [ dL ..
— | = mL291 5 —|— | = mLzel
04 dt\ g6,

oL
(—) = —(KL? + mgL)8, + KL?0,

oL . d /0L .
— | = I’I’ILZBZ 5 =\ — | = mLZGZ
8, dt\ a8,

oL
(—) = —(KL? + mgL)0, + KL20,

s mL?0; + (KL? + mgL)8, — KL?0, = 0
mL?8, + (KL? + mgL)6, — KL?6, = 0

BEE saE wEs EEE EEE sEs EEE EEE EEE mEw omE oww

4-Les pulsations propres du systéme :

On fait ’hypothese que le systéme admet des solutions harmoniques :

Do . el(t) = Al Sin((.l)t + (‘Pl) = él = _(1)291
. ez(t) == AZ Sin((l)t + (pz) = éz = _(1)262
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w est ’'une des pulsations propres du systeme.

On remplace 6; = —w?0, et B, = —w?0, dans les équations (1) et (2) on trouve :
( K g K

K ) K g
L —ael — W 62 + (E + E) 62 = O TR I IR I R I T (4‘)

{ (KL? + mgL—w?mL?)8, — KL?8, = 0
—KL%0; + (KL? + mgL—w?mlL?)0, =0

<KL2 + mgL—w?mlL? —KI12 )(91) _ (0)
—KI12 KL? + mgL—w?mL?/\6,/ ~ \0

On calcul le déterminant A(w):

KL? L—mL?w? —KL2
A(OO):| Tme Zm ® 2 2,2 |=0
—KL KL* + mgL—-mL*w
A(w) = (KL? + mgL—mL?w?)? — (KL2)2 =0
2 12,2 _ [+KI?
KL* + mgL—-mL w* = {—KLZ
2K ( 2K
,_2K g _ X, 8
{KLZ +mgl—ml?w? = —KL? _ }©1 “m L N R
KL? + mgL—mL?w? = +KIL? w28 5
2= 1 w, = 2

wq: la premiére pulsation propre, w-: la deuxieme pulsation propre.
-Calcul des modes propres :

Dans chaque mode les deux masses effectuent des mouvements harmoniques simples avec la
méme pulsation (w;0u w, ) et les deux pendules passent par la position d’équilibre au

méme instant.

-Premier mode : on remplace dans (3) ou (4) par w? = % + %
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On obtient apres calcul : 6, = —0,

-Deuxiéme mode : on remplace dans (3) ou (4) par w3 =

ol [¢1°]

On obtient apres calcul : 6, = 0,

5- Les rapports des amplitudes dans les modes :

Pour calculer les rapports des amplitudes dans les modes, on suppose que le systeme oscille

soit dans le premier mode soit dans le second mode.
Dans le premier mode, on obtient le systéme

{ (KL + mgL — mL2w?) — KL2p; = 0
—KL? + (KL? + mgL — mL2w?)y; =0

Dans le second mode, on obtient

{ (KL? + mgL — mL2w?) — KL2p, = 0
—KL? + (KL? + mgL — mL2w?)u, =0

Tenant compte des expressions de w; et w, on obtient les valeurs du rapport des amplitudes

dans les modes p; = +1letp, = —1

6- Calcul des solutions des équations différentielles 6, et 6 :
La solution générale s’écrit alors comme une combinaison linéaire des deux solutions.

{el(t) = A, sin(w;t+ @) + By sin(w,t + @5)
0,(t) = A, sin(w,t + @) + B, sin(w,t + ¢,)

Dans le premier mode : w = w; = 0, = —0; > A; = —A, = v1(_11),
71 est le 1°" vecteur propre.
Dans le premier mode : w = w, > 60, =0, = B; =B, = Vz(i),

72 est le 28™€ vecteur propre.
Donc :

{Bl(t) = Asin(w;t + ;) + Bsin(w,t + ¢,)
8,(t) = —Asin(w,t + @) + Bsin(w,t + ¢3)
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{el (0) =6¢,6,(0) =0
8,(0)=0,6,(0)=0

él (t) = A(L)l COS((Dlt + (‘pl) + B (1)2COS((1)2t + (pz)
0, (t) = —Aw; cos(w;t + @;) + B w,cos(w,t + @)

{ 0,(0) =Asin@; + Bsin@, =0y . cevcee vv vvvee e eee .. (5)
0,(0) = —Asin@; +Bsin@, =0...cc. e cee e v vev v (6)
0; (0) = Aw; cos@; + Bw,cos @y =0 e vv v cvv e eee. (7)
0, (0) = —Aw; cos@; + Bw,cos @, =0 ... eev vae ... (8)

T
(7) + (8) = 2Bw,cos@, =0 = cosp, =0 = @, =5

s
(8)—(7) > —2Aw cos@; =0 = cosp; =0= @, = >

{(5):A+B=90 - A=
(6)>—-A+B=0 |p=—

D
NléDNlo

0 . 0 .
0,(t) = 7“ sin (wlt + g) + 70 sin (wzt + g)

0,(0) = — 2

_% ™) 4+ 8o g ( E)
> sm(co1t+2)+ 5 Sin w2t+2

8,(t) = 670 [sin (wlt + g) + sin (wzt + g)]

0,(t) = 670 [— sin (oolt + g) + sin (wzt + g)]

Exercice N°3:

On considere le systéme représenté par la K a K

figure ci-contre, et composé de deux M M:

oscillateurs harmoniques (My, K) et (M5, K) X1 X2

couplés par un amortisseur a.
1- Décrire le systéme et donner le type du couplage ?

2- Déterminer I’énergie cinétique E. et potentielle Ep du systéme.
3- Déterminer le Lagrangien du systéme
4- Déterminer les équations différentielles du mouvement en fonction des variables

x, (D) et x,(t).
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5- On pose les parameétres suivants : M; = M, = M. Etablir les nouvelles équations
différentielles du mouvement.

Solution N°3 :

1- Systéme oscillatoire a 2 ddl (x4, x,). Le type du couplage :couplage élastique.
2- I’énergie cinétique E, et potentielle Ep du systeme :

= [’énergie cinétique du systeme E:

Ec = 2 Myx? + - M3

* L’énergie potentielle du systéme E:

1 2 1 2
Ep =K} + 2K

= La fonction de dissipation Ep:

Ep = Ea(fh —%;)?
3- Le lagrangien est du systéme :
La fonction de Lagrange: L = E. — Ep
L = ZMyx? + 2 Mpx% — ~Kx? — ~Kx3
4- les équations différentielles du mouvement en fonction des variables x4 (t) et x,(t) :

Le formalisme Lagrangien :

d /0L JdL 0Ep
(66 o
dt aXl aXl 6X1
JoL 0Ep
o)~ (50) + 350 -
t\ox, 0%, ax,
() =Mt = ) = s
9%, ~ dt\ox, 1%

-
()=~

0Ep . . ..
6_5<1 = aX; —ax, = a(X; — X,)

d(aL)_M_ :>d(aL)—M"
at\ox,) ~ 22 T qe\ax,) T 2%

115



Chapitre V Oscillation des systemes a plusieurs degrés de liberté
<6L) K

aXZ N X2
J0Ep

f=0().( —oXy = a(x, — X
6X2 2 1 (2 1)

{Mlil +KX1 +O(5(1—(X5(2 = 0
Mziz +KX2 +O(1;(2 —O(Xl == 0

L’équations différentielles :

. a K a .
X1 +M_1X1 +M_1X1 = M_1X2
. a K a
R VI A VI

o

Mlil + (15(1 + KXl = (X.).(z
sz&z + (XXZ + KX2 ES O(f(l

5- Les nouvelles équations différentielles du mouvement si : M; = M, = M.

M1=M2=M${

(1) —(2) = M(¥; — %) + a(x; — %) + K(x; —x3) = aX; —Xq)

= M(X1 - Xz) + 20((X1 - Xz) + K(Xl - Xz) = 0

(D) +(2) = M(E; +%,) + alX; +%X3) + KXy +x3) = a(X, + Xq)

= M(Xl + Xz) + K(Xl + Xz) =0

OnposeiX1=X1—X2$X1=5{1—)’(2$X1=5ﬁ1—i2
X2=X1+X2$X2=).(1+).(2:X2=i1+5&2

MX1+2(XX1+KX1=0:>
MX, + KX, = 0

Exercice N°4:

Un systéme mécanique est composé de deux
oscillateurs (M, R) et (m, 2K) couplés par un (’

ressort de constante de raideur K se trouvant

.. 2a . K
X1 +_X1 +_X1 = 0

M M
5’<+KX =0
2 MZ—

0 K

y

=

2K

a une distance a du centre o du disque (voire la figure).

En considéron les oscillations des faibles amplitudes.

1- Donner la ou les équations différentilles du mouvement.

2- Donner la ou les solutions des équations différentilles du mouvement.
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On donne J o =%MR2 =m,a=1

Solution N°4 :

1- Les équations différentilles du mouvement :
Le systéme est a 2 degrés de liberté : x,, = X, = X, = X,
Le ressort horizontal K relis les deux oscillateurs donc xg = x — a sin®.
= L’énergie cinétique du systéme E..:
Ec = Ecm + Ecm
_ 1 -2 1 A 2 _ 1 .2 1 A 2
Ec = me + E]/oe = mel + EmG
= L’¢nergie potentielle du systeéme Ep:
Ep = Epx + Ep2k
1 2 L 2
Ep = > K(x —asin0)“ + > (2K)x5
La fonction de Lagrange : L = E. — Ep
L= %mxz + %méz —%K(x — asinB)? — Kx3

Les équations de Lagrange sont :

{dt(ax) (5)

d 6L> <6L>_
dt\9o 00/

0

_ .:>d<6L)_ .
- qclex) T

. d oL
=mb = —=(55) =
dt \oo

KacosO(x — asinB) = Kax — Ka?0

G5
)
) em a0
)
)"

:>{m5i+K(x—a9)+2KX=0
mé + Ka?0 —Kax = 0
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mx + 3Kx —KO = 0. ceo. cev eve v e (1)
a:lﬁ{ o

mb+ KO —Kx =0 ... (2)

3K K

¥+ —x——0=0
= m m

. K K
6+—0——x=0
m m

2- Les solutions des équations différentilles du mouvement :

On fait ’hypothese que le systéme admet des solutions harmoniques :

x(t) = A; sin(wt + @) = ¥ = —w?x
8(t) = A, sin(wt + ¢@,) = 6 = —w?0

On remplace dans les équations (1) et (2) donc :

{—m(ozx +3Kx—K0 =0
—mw?0 + K6 —Kx =10

{ BK—mw?)x —KB=0..ccoeeeeecevee . (3)
~Kx+ (K—=mw?)0 =0 (4)

— — 0
(2R ki @=0)
= Les pulsations propres :

Le systéme admet des solutions non nulles si seulement si le déterminant A(w) = 0

— 2 —

Le déterminant A(®) est appelé déterminant caractéristique. L’équation A(w) = 0 est

appelée I’équation caractéristique ou équation aux pulsations propres. Elle s’écrit
A(w) = BK—mw?) X (K—mw?) — K2 =0
Alw) = m?w* — 4Kmw? + 2K =0

On pose : w? = x = A(w) = m?x? — 4Kmx + 2K = 0
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2o (2+V2)K \/i)K
Alw) = 8K?’m? = N (2 \/_)K
w3 = -

Les deux pulsations propres sont :
(

_|(2+V2)x
Wy = T
9
oo |@=V2K
\ m

= (Calcul des modes propres :

1 mode pour w? = w? = (2+\/_)K on aura : (1 + \/E)KX —Ko=0=>0= (1 + \/E)X =
V1(1+x/")
2°M¢ mode pour w? = w3 = (22K \/—) on aura : (1 —\/_)Kx—Ke =0=>0= (1 —\/_)x:

V()

Donc la solution est :

() =A (1+1ﬁ) sin(w;t + ¢;) + B (1_1ﬁ) sin(w,t + @,)
x(t) = Asin(w t + @;) + Bsin(w,t + ¢3)

{e(t) =(1+ \/E)A sin(w,t+ ¢@q) + (1 - \/E)B sin(w,t + @3)

Exercice N°5:

Soit les deux sous-systemes mécanique A et B

Le systéme mécanique A comprenant une barre

horizontale de masse négligeable et de longueur

2L porte en ses extrémités des masses m.

L’ensemble des frottements est symbolisé par

I’amortisseur de coefficient a.

Le systéeme mécanique B est constitué¢ d’un ressort

de constante de raideur K reli¢ a une masse ponctuelle m.

Les deux sous-systémes A et B sont couplés par le ressort 2K. Le nouveau systéme est repéré
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

a I’instant t par les coordonnées généralisées 0(t) et x(t) supposées de faibles amplitudes.
1- Quel est le nombre de degré de liberté ? Donner le type du couplage ?
2- Trouvez les équations différentielles du mouvement du systeme couplé.

3- On néglige I’effet d’amortissement (o =0), écrire les équations du mouvement sous la
forme matricielle (Z cci) (Z) = (g).

4- Trouvez les valeurs de a, b, c et d.

Solution N°5 :

1- Le nombre de degré de liberté est de 2, couplage élastique.

2- les équations différentielles du mouvement du systéme couplé :
= L’énergie cinétique du systeme E:
Ec =Em + Ecm + Ecm

1 ., 1 o1 -
ECZEmX -l'EIm/oe +§]m/oe

E. =imx? 4+ 1ml1262 + 1m1262
¢ 2 2 2

1 1 )
E.= mez + > (2mL?)6?
= L’¢nergie potentielle du systeme Ep:

Ep = Epg + Epax + Epk + Epm + Epyy

1 _ 1 . 1
Ep = > KI2sinB? + > (2K)(x — Lsin®)? + EKXZ + mgLcos® — mgLcos6

I o2 o2, 1 S
Ep = EKL sinB“ + E(ZK)(X— Lsin®)“ + EKX

= La fonction de dissipation :

1 1 .
— (v )2 = Z (12102
Ep = 5 a(k0)? = 5 (al?)8
La fonction de Lagrange : L = E. — Ep
1 .2 1 2 ~ 2 1 . 2 1 2 1 . 2
L= > MX* 4~ (2mL~)6° — EK(LsmG) — EKX — E(ZK)(X — Lsin®)

Les deux équations de la grange:
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

aL B 6ED
dt ae BFT)
OL) _ 0
ax h
<6L) _ R d <6L> _
%) T ™ T q\ex) T
oL
<&> = —Kx + 2x — 2Lsin0® = —Kx — 2K(x — Lsin0)
oL A d /0L ..
0 dt\oo
JL
<£) = —KL2sinBcos0 + 2KLcosB(x — Lsin0)
0E A
—D2 = 120
00

{ZmLé + al?6 + KL2sinBcos® — 2KLcosO(x — Lsin®) = 0
mX + Kx + 2K(x — Lsinf) =0

{ZmLé + al20 + 3KLO — 2Kx = 0
m% + 3Kx — 2KLO =0

=0 {Zm.[..9+ 3KLO —2Kx =0
mX + 3Kx — 2KLO =0

3— Ecrire le systéme d’équation sous la forme matricielle :
On fait I’hypothése que le systtme admet des solutions harmoniques :

8(t) = A, sin(wt + @,) = 6 = —w?0
x(t) = A; sin(wt + @) = ¥ = —w3x

On remplace dans les équations différentielles du mouvement donc :

{—Zmeze + 3KL6 —2Kx =0
—2KLO — mw?x + 3Kx =0

{(3KL — 2mLw?)8 — 2Kx = 0
—2KL8 + BK—mw?)x =0

(SKL —2mLw?  —2K ) (9) _ (0)
—2KL 3K — mw?/ \x 0
4- Les valeursde a, b, cetd:
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a=3KL—-—2mLw? , b=—-2KL , c=-2K, d=3K—mw?

Exercice N°7 :

Soit le systéme mécanique oscillant de la figure ci-contre,

x4 et X, sont respectivement les positions dynamiques

(amplitudes a chaque instant) des masses m; et m, par rapport a leurs
positions de repos (d’équilibre). F(t) force excitatrice appliquéeen m;. @ |:
1- Quel est le nombre de degré de liberté ?

2- Déterminer 1’énergie cinétique E., potentielle Ep et la Fonction de

dissipation Ep du systéme.

3- Ecrire les équations différentielles avec: m; = m, = m etK; =K, = K
4- Trouver les solutions du régime permanant sachant que F(t) = Kacos(lt
5- Si a = 0, pour qu’elle valeur de Q a-t-on résonnance.

Donner dans ce cas la condition pour laquelle la 1°© masse reste immobile.
Solution N°7:

1- Le nombre de degré de liberté est de 2.

2- I’énergie cinétique E, potentielle Ep et la Fonction de dissipation Ep du systéme :

L’énergie cinétique du systéme E.: E. = %ml)'(% + %mzk%
L’énergie potentielle du systéme E,: Ep = %lef + §K2 (X1 — X2)?
L’¢énergie de dissipation Ep: Ep = %ook%

3- Les équations différentielles :

Le Lagrangien : L = E. — Ep

1 o2 1 o2 2 2
L=Em1X1 +Em2X2 _EK1X1 _EKZ(Xl _Xz)
avec:my = m, = m etK; =K, =K
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Chapitre V Oscillation des systemes a plusieurs degrés de liberté

1 ., 21 5 2
Lzzmxl+me2—§Kx1—§K(X1—X2)

Les équations de Lagrange :

d /0L oL
(3692

dt\ox,) ox, ™
d(aL) 6L+6D_O
dt\ox,) dx, 0%,

Les équations décrivant la variation des élongations x; et X, en fonction du temps, s’écrivent

comme Suit:

{mil + Kx; + K(x; — x3) = F(t) :{ m¥; + 2Kx; — Kx, = F(t)
mX, — K(x; —x,) +ax, =0 m¥, — Kx; + Kx, +a%x, =0

. 2K K
Xq +HX1 — X2 = F(t)

. I: I( o4 o 0
2 2 1 2

4- Les solutions du régime permanant :
X, (t) = X, /@) = X oM 5 5 (1) = —Q2X, eI
X, (1) = X,el @) = X el = g, (£) = —02X,el

2k k

—02 4+ 2= = - ka
T m <X1> N
k k a [\X, ]
-— 04+ —+j0—= X2 0
m m m
2k k a\y K2
det(Q) = 0= (—QZ +—) (—QZ +—+]Q—) -—=0
m m m/ m

X, = ! ( 92+k+'9a)
1™ det m ] m

s 1 (K
27 det mza

5- Calcul des pulsations pour a = 0

2k k k2
det(Q) =0= (—QZ + —) (_QZ + _> -—=
m m m
3k k?
Q4 - —.QZ + — =0
m m
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w0, = £ (3-+5)

L’équation admet deux solutions : K
2m

Pour que la masse m; est immobile :

1
det

1:

(-2 4+ +jaS)=0cta=0>-02+"=0 = ma:\/E
m m m m

Exercice N°8 :

Considérons le systeme a deux degrés de liberté de la figure ci-contre.
Soient x; et X, les déplacements conséquents dynamique de m et M
par rapport a leurs positions d’équilibres.

1- Décrire le systéme et donner le type du couplage ?

2- Trouver I’énergie cinétique E., potentielle Ep et la Fonction de

dissipation Ep du systeme.

3- Trouver les solutions du régime permanant sachant que F(t) = KAcosQt

4- Si o = 0, pour quelle valeur de (1 le systéme entre en résonance. Donner dans
ce cas la condition pour que la masse m excitée reste immobile ?

Solution N°8:

1- Systéme oscillatoire a deux degrés de liberté (x4, X5), le type du couplage : couplage

¢lastique.
2- I’énergie cinétique E, potentielle Ep et la Fonction de dissipation Ep du systéme :
L’énergie cinétique du systetme E.: E. = %mxf + % Mx3
L’énergie potentielle du systéme E: Ep = %kxf + %K(x1 —X;)?
L’énergie de dissipation Ep: Ep = %oo'(%
3- Les ¢équations différentielles :
Le Lagrangien : L = E. — Ep
1 1

L= me% +EmX% —EkX% _EK(Xl —XZ)Z
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1 .1 .1 1
L=§mX%+EmX%—§(k+K)X%—EKX%+KX1X2

Les équations de Lagrange :

d(@L) 6L+6D _r
dt\ox,/ odx, 0%,
d (GL) L )
dt\ox,/ dx,
Les équations différentielles du mouvement s’écrivent:
.o o k+K) K
{mi&l + oy + (k+K)x —Kx, =F_ JRat it — =X = =F

—Kx; + mX, + Kx, =0 . K
X2+_X2__X1 = 0
m m

4- Les solutions du régime permanant :
X, (t) = X, /@) = X oM 5 5 (1) = —Q2X, eI

X2 (t) = Xzej(ﬂt+¢1) S X_Ze]Qt = iz (t) = _QZX_Zeth

— F Qz—%

T o () )
— _ _KF 1

M e () ) e (0 )

4- Pour que la masse m; est immobile :
- K K
X;=0eta=0=>-0%24+—=0 = wy = /—
m m
Lorsque la pulsation de la force excitatrice est égale a ma= - la masse m est immobile

. . k K g
Si on choisit K et M telles que = (c’est-a-dire telles que wy = (), la masse m est

. . . o . . K K
immobile lorsque la pulsation excitatrice () est ¢gale a w, = \/; = \/;

Dans ces conditions, 1’ajout de K et M permet d’annuler la vibration de m a cette pulsation.

Un tel dispositif constitue un "étouffeur" dynamique de vibrations.

125



Chapitre V Oscillation des systémes a plusieurs degrés de liberté

Exercice N°9 :

On modélise le mouvement d’une molécule

K K
triatomique (A-B-A) a un systéme mécanique o e o
L
X3

.

constitué par trois masses couplées par deux X1

ressorts identiques de constante de raideur k
représenté dans la figure ci-contre.
1- Etablir le Lagrangien du systeme.

2- Déterminer les équations différentielles du mouvement.

3- En déduire les pulsations propres ainsi la nature du mouvement.

4- Donner la matrice de passage et les solutions générales.

Solution N°9 :

1- Le Lagrangien du systeme :
= L’énergie cinétique E. :
Ec = 2mx? + - (2m)3 + - mi3
» L’¢nergie potentielle du systeme Ep:
Ep = 5 K(x: — )% + 3 KGty — x2)°

Le Lagrangien s’exprime alors :

LZEC_EP

1 1 1 1
L=-m%’ + 5 (2m)%; + > mi3 — S K(x; — x,)% — 5Kt = x3)?

2 )

2- Les équations différentielles du mouvement :
rd ( oL ) ( oL ) 0
dt \ox, ox,)

d /9L oL mil + KXl - KX2 =0
) -5 -0-
dt aXZ 6X2

Zmiz + 2KX2 - KX1 - KX3 =0
d ( oL ) ( oL )
\dt aX3 aX3

mx; + Kxz — Kx, =0
0
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3- En déduire les pulsations propres ainsi la nature du mouvement :

On considere les solutions du systéme de type sinusoidal :

x;1(t) = A; cos(wt + @) = ¥, = —w?x,
Donc :{x,(t) = A, cos(wt + @) = X, = —w?X,
X3(t) = Az cos(wt + @3) = X3 = —w?X3

En remplagant les solutions dans le syst¢me différentiel, On obtient un systéme linéaire

suivant :
-mw?x; + Kxy —Kx, =0 (K—mw?)x; —Kx, =0
—Zm(,l)ZXZ + ZKXZ — KXl —_ KX3 = 0 — —KX]_ + (ZK - Zm(,l)z )XZ — KX3 = 0
—mw?x3 + Kx; — Kx, = 0 Kx, + (K— mw?)x; =0

K — mw? —K 0 X1 0
—K 2K — 2mw? —K X2|=(0
0 K K —mw?/ \X3 0

Le systéme admet des solutions non nulles si seulement si : det = 0

det=0= (K- mo?)[(K-mw?)?-K*] =0

K
w, = |=
1 m

Les pulsations propres sont :{ w, = 0

4- La matrice de passage :

1 1 1
P=10 1 -1
0 0 O

-La solution générale est :

x1(0) cos(w;t+ @q)
X2(t) | = p | cos(wyt + @3)
X3 (t) cos(wst + @3)

X, () 0 1 —1]| cos(wt+ @,)
X5 (t) 0 0 O cos(wst + @3)

Exercice N°10 :

X1 (1) (1 1 1) cos(wyt + @1)

Un systéme mécanique constitue trois pendules simples identiques, de masses m de longueur

L, présentés dans la figure ci-dessous. Les masses sont reliées entre elles par I’intermédiaire
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de deux ressorts identiques, de raideur k. A I’équilibre, les pendules sont verticaux, les trois
masses sont ¢quidistantes sur une méme, et les ressorts ont leur longueur naturelle. Le
systetme en mouvement est défini, a I’instant t, par les élongations angulaires 04 , 8,, 03 des

pendules avec la verticale descendante. On posera les constantes suivantes :

[
1

Quel est le nombre de degré de liberté ?
2- Déterminer le Lagrangien du systéme.

3

Etablir les équations différentielles du second ordre pour les petites oscillations.

4

Déterminer les pulsations propres du systéme.
5- Calculer les pulsations propres.

Solution N°10:

1- Le nombre de degré de liberté:
Le systéme a trois degrés de liberté représentés par : 0, , 6, , 05
2- Le Lagrangien du systéme :
= L[’énergie cinétique s’exprime:
Ec = 5 mL267 + 7 ml263 + 2 ml03 = - ml2(6% + 63 + 63)
= L’énergie cinétique Ep:
Ep = %k (L6; — LB,)2% + %k (L6, — LO3)? —mgL( 6, + 6, + 03)

Le Lagrangien s’exprime comme suit :

1 o 1 1
L= EmLZ(B% +0%+63) - Ek (LB; — LO,)% — Ek (L8, — LO3)% + mgL( 0, + 0, + 853)
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3- L’¢équation différentielle :

On remarque bien deux coordonnées généralisées qui décrit le mouvement donc on aura trois

équations de Lagrange :

rd(@L) <6L> .
dt \aé, a0,/

d /oL oL 03 + (Qf + w503 — w§h, = 0
\dt \ 965 (693)

4- Les pulsations propres :

On considere les solutions du systéme de type sinusoidal :

8, (t) = A; cos(wt + @) = 6, = —w?8;
Donc { 0,(t) = A, cos(wt + @,) = 0, = —w?0,
05 () = Az cos(wt + ¢3) = 0; = —w?0;

En remplagant les solutions dans le systéme différentiel, On obtient un systéme lin€aire
suivant :

(—0? + Q% + 03)8; — w30, =0
(—0? + Q% + 202)0, — w30; — w305 =0
(—0? + Q% + 03)0; — w30, =0

—w? + Q% + 0§ —ws 0 X4 0
— w3 —w? + Q% + 2w} -w3 (Xz) = (0)
0 -w}3 —0? + Q%+ wi/) \X3 0

Le systéme admet des solutions non nulles si seulement : det = 0

—w? + Q% + w3 —w3 0
- w3 —w?+ 03 + 2w} Y =0
0 -3 —w? + Q% + w3

D’ou :
(—w? + Q% + wd) [w* — (203 + 3w)) w? + Q¢ + 3wi0Q3] = 0
w1 = Lo

Les pulsations propres sont : { Wz = +/ Q5 + of

w3 = \/Q(z) + 3(»3
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V.6 Exercices supplémentaires

Exercice N°1:

Une molécule diatomique est schématisée figure ci-contre. m k m

*—\V"\WW\—@
L x L

Ses deux atomes sont identiques et ne peuvent se déplacer que

sur 'axe Ox horizontal.

v

1- Trouver I’énergie cinétique E, et potentielle Ep du systéme. o X
2- Trouver I’équation différentielle du mouvement

3- Calculer les pulsations propres.

4- Calculer les rapports d'amplitudes de chaque mode. Décrire le mouvement des atomes dans

chacun des modes.

Exercice N°2 :

Soit le systéme mécanique représenté sur la figure ci-dessous et composé de deux oscillateurs
harmoniques (M, K) couplés par un ressort de constante de raideur K. Les deux masses sont
supposées se déplacer sans frottement sur un plan horizontal et leurs élongations par rapport a

leurs positions d’équilibre sont repérées par x; et X,.
K Ko K
M M
L L
X1 X2

1- Quel est le nombre de degré de liberté ? donner le type du couplage ?

2- Trouver I’énergie cinétique E, et potentielle Ep du systeme.

3- Trouver I’équation différentielle du mouvement et écrire les deux équations sous forme

s . X _ (0
d’une matrice M (xz) = (0)
4- Déterminer les pulsations propres du systeme.

5- Etablir les solutions des équations différentielles du systeme, dans le cas :

X, (t=0)=%p,%, t=0)=0etX; (t=0)=%,(t=0)=0
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Exercice N°3:
Soit le syst¢eme mécanique, constitué¢ de deux
pendules simples de longueur L et de masses
m,, m, représentés dans la figure ci contre comme suit :
1- Quel est le nombre de degré de liberté ?

Donner le type du couplage ?

2- Etablir le Lagrangien du systéme.

3- Donner les équations différentielles du mouvement
pour les faibles oscillations.
mq

4- On pose les constantes suivantes : w3 = %et p=—.
2

Déterminer dans ce cas les pulsations propres du systéme w, et w, en fonction
des parametres w, et L.

5- Déterminer les solutions générales.

Exercice N°4:

On considere le systéme oscillatoire mécanique de la figure

ci-contre, la masse M glisse sans frottement sur un plan

horizontal autour de sa position de repos et entraine par
I’intermédiaire d’un ressort de constante K le pendule

(de masse ponctuelle m et de longueur L) dans son mouvement. m

Le ressort horizontal soude a la masse M et en A au pendule

relie les deux oscillateurs. (OA = a)

1- Décrire le systéme et donner le type du couplage ?
2- Déterminer I’énergie cinétique E,. et potentielle Ep du systéme.
3- Ecrire les équations du mouvement en fonction de x et 0.

4-Onprend: M =m,a = % ,mg = EKL, L = 1(m). Calculer les pulsations du systéme et
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déduire les modes propres.
5- Donner les équations du mouvement x(t) et 0(t).

Exercice N°5 :

1 \ i F(t)
On considere le systéme représenté sur la figure

o I
k2
k1
ci-contre. Sur la masse m; agit une force horizontale :;;;;jif;;;j mw .

sinusoidale de pulsation w et d'amplitude F. Les X1 X2

déplacements des masses m; et m, par rapport a leurs positions d'équilibre sont

respectivement x4 (t) et x,(t).

1- Etablir les équations différentielles qui régissent le mouvement du systéme.
2- En utilisant les notations complexes, déduire les équations algébriques satisfaites par
X1 (t) et X, (t) en régime sinusoidal permanent.

2 (t
3- En calculant le rapport zl—gti , montrer que le mouvement des masses m; et m,, ne
2

peuvent étre qu'en phase ou en opposition de phase. Déterminer les pulsations pour

lesquelles x4 (t) et X, (t) sont en phase.

Exercice N°6 :

Sur un arbre OO’ horizontal et fixe, de masse négligeable, encastré a ses extrémités O et O’,
sont fixés trois disques (D;), (D;) et (D3) de centres respectifs 0, 0, et O; et de méme
moment d’inertie J par rapport a leur axe commun 00’. On désignera 6 (t)

0, (t) et B5(t), les angles angulaires de rotation de chacun des trois disques par rapport a
leur position de repos. voire la figure ci-dessous.

Les quatre partis 0, 0,, 0,0,, 0,05de et 050’de I’arbre ont méme constante de torsion C.

C
On posera la constante : w% = 7

o1 (1) O:z2(1) Os(y)

S, [y S S

TN N N

D>

o
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1- Déterminer le Lagrangien de ce systeme.

2- Etablir les équations différentielles du second ordre vérifiées par les angles
01(1),0,(t) et 63(t).

3- En déduire les trois pulsations propres wq, w, et ws de ce systéme en fonction de w,.

4- Calculer I’énergie mécanique totale E de cette chaine de trois disques, pour chacun des
modes propres, en fonction de C et de I’amplitude angulaire 6, du disque D;.

5- On applique au seul disque D; un couple moteur de moment sinusoidal, de pulsation w et

d'amplitude I, T = Tcoswt.

2
-Etablir en fonction du parameétre X = (mi) , les amplitudes angulaires A;, A, et Az de
0

chacun des disques en régime forcé.

-Pour quelles valeurs de X ce systeme est-il en résonance ?
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