
The Black body radiation 

Introduction 

All bodies emit electromagnetic radiation over a range of wavelengths. We know by observation 

that when a body is heated and its temperature rises, the perceived wavelength of its emitted 

radiation changes from infrared to red, and then from red to orange, and so forth. As its temperature 

rises, the body glows with the colors corresponding to ever-smaller wavelengths of the 

electromagnetic spectrum. This is the underlying principle of the incandescent light bulb: A hot 

metal filament glows red, and when heating continues, its glow eventually covers the entire visible 

portion of the electromagnetic spectrum. The temperature (T) of the object that emits radiation, or 

the emitter, determines the wavelength at which the radiated energy is at its maximum. For 

example, the Sun, whose surface temperature is in the range between 5000 K and 6000 K, radiates 

most strongly in a range of wavelengths about 560 nm in the visible part of the electromagnetic 

spectrum. Your body, when at its normal temperature of about 300 K, radiates most strongly in the 
infrared part of the spectrum. 

Description 

Radiation that is incident on an object is partially absorbed and partially reflected. At 

thermodynamic equilibrium, the rate at which an object absorbs radiation is the same as the rate at 

which it emits it. Therefore, a good absorber of radiation (any object that absorbs radiation) is also 

a good emitter. A perfect absorber absorbs all electromagnetic radiation incident on it; such an object 

is called a blackbody. 

Although the blackbody is an idealization, because no physical object absorbs 100% of incident 

radiation, we can construct a close realization of a blackbody in the form of a small hole in the wall 

of a sealed enclosure known as a cavity radiator, as shown in Figure . The inside walls of a cavity 

radiator are rough and blackened so that any radiation that enters through a tiny hole in the cavity 

wall becomes trapped inside the cavity. At thermodynamic equilibrium (at temperature T), the 

cavity walls absorb exactly as much radiation as they emit. Furthermore, inside the cavity, the 

radiation entering the hole is balanced by the radiation leaving it. The emission spectrum of a 

blackbody can be obtained by analyzing the light radiating from the hole. Electromagnetic waves 
emitted by a blackbody are called blackbody radiation. 

 
Figure .1 A blackbody is physically realized by a small hole in the wall of a cavity radiator. 

The intensity I(λ,T) of blackbody radiation depends on the wavelength λ of the emitted radiation 

and on the temperature T of the blackbody (Figure.3). The function I(λ,T) is the power 

intensity that is radiated per unit wavelength; in other words, it is the power radiated per unit area 
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of the hole in a cavity radiator per unit wavelength. According to this definition,  I(λ,T)dλ is the 

power per unit area that is emitted in the wavelength interval from λ to λ+dλ.. The intensity 

distribution among wavelengths of radiation emitted by cavities was studied experimentally at the 

end of the nineteenth century. Generally, radiation emitted by materials only approximately follows 

the blackbody radiation curve (Figure 4); however, spectra of common stars do follow the blackbody 
radiation curve very closely. 

 
Figure.3 The intensity of blackbody radiation versus the wavelength of the emitted radiation. Each 

curve corresponds to a different blackbody temperature, starting with a low temperature (the lowest 

curve) to a high temperature (the highest curve). 

 
Figure 4 The spectrum of radiation emitted from a quartz surface (blue curve) and the blackbody 

radiation curve (black curve) at 600 K. 

Two important laws summarize the experimental findings of blackbody radiation: Wien’s 

displacement law and Stefan’s law. Wien’s displacement law is illustrated in Figure 6.3 by the 

curve connecting the maxima on the intensity curves. In these curves, we see that the hotter the 

body, the shorter the wavelength corresponding to the emission peak in the radiation curve. 
Quantitatively, Wien’s law reads 

λmaxT=2.898×10−3m⋅K                 1  

where λmax is the position of the maximum in the radiation curve. In other words, λmax is the 

wavelength at which a blackbody radiates most strongly at a given temperature T. Note that 

in Equation.1, the temperature is in kelvins. Wien’s displacement law allows us to estimate the 
temperatures of distant stars by measuring the wavelength of radiation they emit.  
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EXAMPLE .1 

Temperatures of Distant Stars 

On a clear evening during the winter months, if you happen to be in the Northern Hemisphere and 

look up at the sky, you can see the constellation Orion (The Hunter). One star in this 

constellation, Rigel, flickers in a blue color and another star, Betelgeuse, has a reddish color, as 

shown in Figure.5. Which of these two stars is cooler, Betelgeuse or Rigel? 

Strategy 

We treat each star as a blackbody. Then according to Wien’s law, its temperature is inversely 

proportional to the wavelength of its peak intensity. The wavelength λ(blue)max (blue) of blue light 

is shorter than the wavelength λ(red)max (red) of red light. Even if we do not know the precise 

wavelengths, we can still set up a proportion. 

Solution 

Writing Wien’s law for the blue star and for the red star, we have 

λ(red)maxT(red)=2.898×10−3m⋅K=λ(blue)maxT (blue)          .2  

When simplified, Equation.2 gives 

T(red)=λ(blue)maxλ(red)maxT(b lue)<T(blue)             .3  

Therefore, Betelgeuse is cooler than Rigel. 

Significance 

Note that Wien’s displacement law tells us that the higher the temperature of an emitting body, the 

shorter the wavelength of the radiation it emits. The qualitative analysis presented in this example 

is generally valid for any emitting body, whether it is a big object such as a star or a small object 

such as the glowing filament in an incandescent lightbulb. 

CHECK YOUR UNDERSTANDING .1 

The flame of a peach-scented candle has a yellowish color and the flame of a Bunsen’s burner in a 
chemistry lab has a bluish color. Which flame has a higher temperature? 

 
Figure 6.5 In the Orion constellation, the red star Betelgeuse, which usually takes on a yellowish 

tint, appears as the figure’s right shoulder (in the upper left). The giant blue star on the bottom right 
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is Rigel, which appears as the hunter’s left foot. (credit left: modification of work by Matthew 

Spinelli, NASA APOD) 

The second experimental relation is Stefan’s law, which concerns the total power of blackbody 

radiation emitted across the entire spectrum of wavelengths at a given temperature. In Figure 6.3, 

this total power is represented by the area under the blackbody radiation curve for a given T. As the 

temperature of a blackbody increases, the total emitted power also increases. Quantitatively,  
Stefan’s law expresses this relation as 

P(T)=σAT4                 .4  

where Ais the surface area of a blackbody, T is its temperature (in kelvins), and σ is the Stefan–

Boltzmannconstant, σ=5.670×10−8W/(m2⋅K4). Stefan’s law enables us to estimate how 

much energy a star is radiating by remotely measuring its temperature.  

EXAMPLE .2 

Power Radiated by Stars 

A star such as our Sun will eventually evolve to a “red giant” star and then to a “white dwarf” star. 

A typical white dwarf is approximately the size of Earth, and its surface temperature is 

about 2.5×104K. A typical red giant has a surface temperature of 3.0×103Kand a radius 

~100,000 times larger than that of a white dwarf. What is the average radiated power per unit area 

and the total power radiated by each of these types of stars? How do they compare? 

Strategy 

If we treat the star as a blackbody, then according to Stefan’s law, the total power that the star 

radiates is proportional to the fourth power of its temperature. To find the power radiated per unit 

area of the surface, we do not need to make any assumptions about the shape of the star 

because P/A depends only on temperature. However, to compute the total power, we need to make 

an assumption that the energy radiates through a spherical surface enclosing the star, so that the 

surface area is A=4πR2 , where R is its radius. 

Solution 

A simple proportion based on Stefan’s law gives 

Pdwarf/AdwarfPgiant/Agiant=σT4
dwarfσT4

giant=(TdwarfTgiant)4=(2.5×1043.0×103)4=4820 .5  

The power emitted per unit area by a white dwarf is about 5000 times that the power emitted by a 

red giant. Denoting this ratio by a=4.8×103, , Equation.5 gives 

PdwarfPgiant=aAdwarfAgiant=a4πR2
dwarf4πR2giant=a(RdwarfRgiant)2=4.8×103(Rdwarf105Rdw

arf)2=4.8×10−7            6  

We see that the total power emitted by a white dwarf is a tiny fraction of the total power emitted by 

a red giant. Despite its relatively lower temperature, the overall power radiated by a red giant far 

exceeds that of the white dwarf because the red giant has a much larger surface area. To estimate 

the absolute value of the emitted power per unit area, we again use Stefan’s law. For the white 

dwarf, we obtain 
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PdwarfAdwarf=σT4
dwarf=5.670×10−8Wm2⋅K4(2.5×104K)4=2.2×1010W/m2   .7  

The analogous result for the red giant is obtained by scaling the result for a white dwarf: 

PgiantAgiant=2.2×10104.82×103Wm2=4.56×106Wm2≅4.6×106Wm2    .8  

Significance 

To estimate the total power emitted by a white dwarf, or a red giant, we could use Equation.7, 

estimating the surface area using the approximate sizes indicated in the problem statement.  

CHECK YOUR UNDERSTANDING .2 

An iron poker is being heated. As its temperature rises, the poker begins to glow —first dull red, 

then bright red, then orange, and then yellow. Use either the blackbody radiation curve or Wien’s 
law to explain these changes in the color of the glow. 

CHECK YOUR UNDERSTANDING .3 

Suppose that two stars, α and β, , radiate exactly the same total power. If the radius of star α is 

three times that of star β , what is the ratio of the surface temperatures of these stars? Which one is 

hotter? 

The term “blackbody” was coined by Gustav R. Kirchhoff in 1862. The blackbody radiation curve 

was known experimentally, but its shape eluded physical explanation until the year 1900. The 

physical model of a blackbody at temperature T is that of the electromagnetic waves enclosed in a 

cavity (see Figure.2) and at thermodynamic equilibrium with the cavity walls. The waves can 

exchange energy with the walls. The objective here is to find the energy density distribution among 

various modes of vibration at various wavelengths (or frequencies). In other words, we want to 

know how much energy is carried by a single wavelength or a band of wavelengths. Once we know 

the energy distribution, we can use standard statistical methods (similar to those studied in a 

previous chapter) to obtain the blackbody radiation curve, Stefan’s law, and Wien’s displacement 

law. When the physical model is correct, the theoretical predictions should be the same as the 
experimental curves. 

In a classical approach to the blackbody radiation problem, in which radiation is treated as waves 

(as you have studied in previous chapters), the modes of electromagnetic waves trapped in the 

cavity are in equilibrium and continually exchange their energies with the cavity walls. There is no 

physical reason why a wave should do otherwise: Any amount of energy can be exchanged, either 

by being transferred from the wave to the material in the wall or by being received by the wave 

from the material in the wall. This classical picture is the basis of the model developed by Lord 

Rayleigh and, independently, by Sir James Jeans. The result of this classical model for blackbody 

radiation curves is known as the Rayleigh–Jeans law. To explain these results, Rayleigh and 
Jeans, using electromagnetic theory and statistical mechanics, proposed that "the 
radiated electromagnetic field is due to a countable set of linear harmonic oscillators 

that vibrate." 

The radiated energy density is then given by: 

 

https://openstax.org/books/university-physics-volume-3/pages/6-1-blackbody-radiation#fs-id1163713129478
https://openstax.org/books/university-physics-volume-3/pages/6-1-blackbody-radiation#CNX_UPhysics_39_01_blackbody


The Black body radiation 

represents the number of oscillators per unit volume and the 

average energy of each oscillator. These two quantities can be calculated using 
statistical mechanics and are given by respectively: 

 

 Rayleigh–Jeans law  

However, as shown in Figure.6, the Rayleigh–Jeans law fails to correctly reproduce experimental 

results. In the limit of short wavelengths, the Rayleigh–Jeans law predicts infinite radiation 

intensity, which is inconsistent with the experimental results in which radiation intensity has finite 

values in the ultraviolet region of the spectrum. This divergence between the results of classical 

theory and experiments, which came to be called the ultraviolet catastrophe, shows how classical 
physics fails to explain the mechanism of blackbody radiation. 

 
Figure 6 The ultraviolet catastrophe: The Rayleigh–Jeans law does not explain the observed 

blackbody emission spectrum. 

The blackbody radiation problem was solved in 1900 by Max Planck. Planck used the 
same idea as the Rayleigh–Jeans model in the sense that he treated the electromagnetic 
waves between the walls inside the cavity classically, and assumed that the radiation is 

in equilibrium with the cavity walls. The innovative idea that Planck introduced in his 
model is the assumption that the cavity radiation originates from atomic oscillat ions 
inside the cavity walls, and that these oscillations can have only discrete values of 

energy. Therefore, the radiation trapped inside the cavity walls can exchange energy 
with the walls only in discrete amounts. Planck’s hypothesis of discrete energy values, 

which he called quanta, assumes that the oscillators inside the cavity walls 
have quantized energies. This was a brand new idea that went beyond the classical 
physics of the nineteenth century because, as you learned in a previous chapter, in the 

classical picture, the energy of an oscillator can take on any continuous value. Planck 
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assumed that the energy of an oscillator (En) can have only discrete, or quantized, 
values: 

En=nh𝜈,            where    n=1,2,3,...            9  

In Equation.9, f  is the frequency of Planck’s oscillator. The natural number n that enumerates these 
discrete energies is called a quantum number. The physical constant h is called Planck’s constant: 

h=6.626×10−34J⋅s=4.136×10−15eV⋅s                        10  

Each discrete energy value corresponds to a quantum state of a Planck oscillator. 

Quantum states are enumerated by quantum numbers. For example, when Planck’s 
oscillator is in its first n=1quantum state, its energy is E1=h𝜈;; when it is in 

the n=2quantum state, its energy is E2=2h𝜈; when it is in the n=3quantum 

state, E3=3h𝜈;; and so on. 

Note that Equation.9 shows that there are infinitely many quantum states, which can be 
represented as a sequence {h𝜈, 2h𝜈 3h𝜈…, (n – 1)h𝜈 nh𝜈 (n + 1)h𝜈…}. Each two 

consecutive quantum states in this sequence are separated by an energy 
jump, ΔE=h𝜈.. An oscillator in the wall can receive energy from the radiation in the 

cavity (absorption), or it can give away energy to the radiation in the cavity (emission). 

The absorption process sends the oscillator to a higher quantum state, and the emission 
process sends the oscillator to a lower quantum state. Whichever way this exchange of 
energy goes, the smallest amount of energy that can be exchanged is hf. There is no 

upper limit to how much energy can be exchanged, but whatever is exchanged must be 
an integer multiple of hf. If the energy packet does not have this exact amount, it is 

neither absorbed nor emitted at the wall of the blackbody. 

PLANCK’S QUANTUM HYPOTHESIS 

Planck’s hypothesis of energy quanta states that the amount of energy emitted by the 
oscillator is carried by the quantum of radiation, ΔE: 

ΔE=h𝜈 

the energy of each oscillator is an integer multiple of a given value nε=En 
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For this relation to be consistent with the experiment, that is, to satisfy, ε must be an 

increasing function of ν. Planck proposed that ε=hν, where h is a new universal constant 
called the "Planck constant." It follows that: 

"Energy exchanges between matter and radiation occur in discrete and indivisible  

quantities of energy hν, called quanta. 

" "Quanta" is the Latin plural of "quantum," which means "quantity." 

 

The search for the maximum of , as a function of ν, allows us, using Wien's 

empirical law , to determine the value of Planck's constant, which is found to be: 

 

It is observed that at low frequencies, Planck’s law correctly reproduces the Rayleigh-
Jeans law, while at high frequencies, it recovers the experimentally observed 

exponential decay. Indeed: 

If  so  

Than                              
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If  so  

Than                        

Recall that the frequency of electromagnetic radiation is related to its wavelength and to the speed 

of light by the fundamental relation  𝜈λ=c. This means that we can express equivalently in terms 

of wavelength λ.. When included in the computation of the energy density of a blackbody, Planck’s 

hypothesis gives the following theoretical expression for the power intensity of emitted radiation 
per unit wavelength: 

I(λ,T)=
2𝜋ℎ𝑐2

𝜆5
 

1

ehc/λkBT−1
               11  

where c is the speed of light in vacuum and kB is Boltzmann’s constant, kB=1.380×10−23 

J/K.. The theoretical formula expressed in Equation.11 is called Planck’s blackbody radiation 

law. This law is in agreement with the experimental blackbody radiation curve (see Figure.7). In 

addition, Wien’s displacement law and Stefan’s law can both be derived from Equation.11. To 

derive Wien’s displacement law, we use differential calculus to find the maximum of the radiation 

intensity curve I(λ,T). To derive Stefan’s law and find the value of the Stefan–Boltzmann 

constant, we use integral calculus and integrate I(λ,T) to find the total power radiated by a 

blackbody at one temperature in the entire spectrum of wavelengths from λ=0 to λ=∞. 

 
Figure .7 Planck’s theoretical result (continuous curve) and the experimental blackbody radiation 

curve (dots). 

EXAMPLE .3 

Planck’s Quantum Oscillator 

A quantum oscillator in the cavity wall in Figure.2 is vibrating at a frequency 

of 5.0×1014Hz. Calculate the spacing between its energy levels. 

Strategy 
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Energy states of a quantum oscillator are given by Equation.9. The energy spacing ΔE is obtained 

by finding the energy difference between two adjacent quantum states for quantum numbers n + 1 

and n. 

Solution 

We can substitute the given frequency and Planck’s constant directly into the equation: 

ΔE=En+1−En=(n+1)h𝜈−nh𝜈=h𝜈=(6.626×10−34J⋅s)(5.0×1014Hz)=3.3×10−19

J 

Significance 

Note that we do not specify what kind of material was used to build the cavity. Here, a quantum 

oscillator is a theoretical model of an atom or molecule of material in the wall.  

CHECK YOUR UNDERSTANDING .4 

A molecule is vibrating at a frequency of 5.0×1014Hz.. What is the smallest spacing between its 

vibrational energy levels? 

EXAMPLE .4 

Quantum Theory Applied to a Classical Oscillator 

A 1.0-kg mass oscillates at the end of a spring with a spring constant of 1000 N/m. The amplitude 

of these oscillations is 0.10 m. Use the concept of quantization to find the energy spacing for this 

classical oscillator. Is the energy quantization significant for macroscopic systems, such as this 

oscillator? 

Strategy 

We use as though the system were a quantum oscillator, but with the frequency f  of the mass 

vibrating on a spring. To evaluate whether or not quantization has a significant effect, we compare 

the quantum energy spacing with the macroscopic total energy of this classical oscillator.  

Solution 

For the spring constant, k=1.0×103N/m, the frequency 𝜈 of the mass, m=1.0kg , is 

𝜈=
1

2π
√𝑘/𝑚=

1

2π
√1.0 × 103𝑁/𝑚1.0𝑘𝑔≃5.0Hz 

The energy quantum that corresponds to this frequency is 

ΔE=h𝜈=(6.626×10−34J⋅s)(5.0Hz)=3.3×10−33J 

When vibrations have amplitude A=0.10m, the energy of oscillations is 

E=
1

2
kA2=

1

2
(1000N/m)(0.1m)2=5.0J 
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Significance 

Thus, for a classical oscillator, we have ΔE/E≈10−34.. We see that the separation of the energy 

levels is immeasurably small. Therefore, for all practical purposes, the energy of a classical 

oscillator takes on continuous values. This is why classical principles may be applied to macroscopic 

systems encountered in everyday life without loss of accuracy. 

 
 


