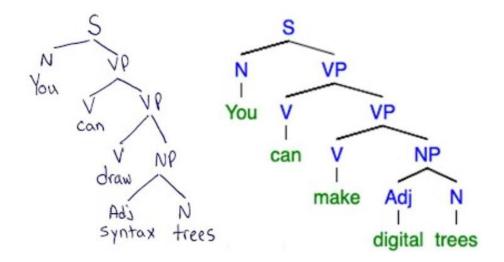
CHAPTER 4 Syntactic Analysis

Syntactic analysis in NLP involves breaking down sentences into their **grammatical components**, such as nouns, verbs, adjectives, and their **relationships**, enabling machines to comprehend the structure and meaning of text


Syntactic Analysis

- Syntax, Grammar, Parser
- Approaches
- Syntax Tree
- Constituency parsing
- Dependency parsing

Syntax?

Syntax deals with the **arrangement** and **relationships** of **words** to form **grammatically** correct **sentences**

- Discover rules governing the arrangement of words in sentences to form coherent language
- Determine hierarchy and order of words, phrases and clauses

Syntactic analysis

Syntactic analysis involves parsing a sentence to understand its grammatical structure.

Main reasons:

- Parsing & Understanding: parse sentences and understand grammatical structure
- Ambiguity resolution: solve ambiguities by providing interpretable structures
- Grammar & Language generation: generate coherent and grammatically correct sentences
- Information extraction: identify syntactic patterns and relationships in texts

Syntactic analysis approaches

Context-Free Grammars (CFG)

Consist of a set of rules that describe how different components of a sentence can be combined. Help generate parse trees:

- Constituency grammars: hierarchical structure
- Dependency grammars: relationships between words

Probabilistic CFG (PCFG)

Assign probabilities to grammar rules

Neural-Based (RNN, CNN, Transformer)

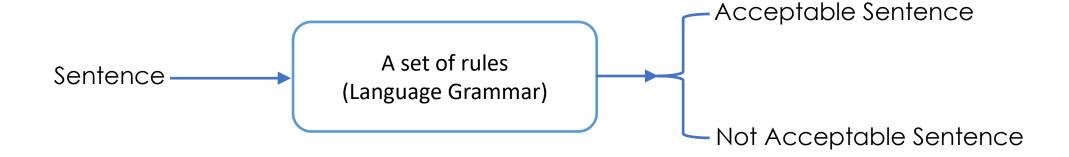
Trained on syntactically annotated Corpora

Phraser?

Parsing is a fundamental process in syntactic analysis that involves breaking down a sentence into its grammatical components and representing them in a structured form, often as a parse tree or dependency graph

Parsing algorithms:

- o Top-Down
- o Bottom-Up


Phrase

A phrase is a group of words that function together as a single unit within a sentence.

A phrase can consist of a single word or a combination of words.

Sentence	S	الجملة
Noun phrase	NP	جملة إسمية
Verb phrase	VP	جملة فعلية
Prepositional phrase	PP	جملة الوصل (جار ومجرور)
Adjective phrase	ADJP	جملة الصفة (صفة وموصوف)
Adverb phrase	ADVP	جملة الحال
Noun	N	الإسم
Verb	V	القعل
Preposition	Р	حرف الجر
Conjunction	CONJ	أداة الوصل (حرف العطف)
Determiner	Det	أداة التعريف

A set of rules that help check whether a sentence belongs to a language or not

A language grammar G is defined by {S, N, T, R}:

- S: Start (Sentence)
- N: Non terminals (Phrases)
- T: Terminals (Words)
- R: Grammar rules

S = Ahmed wrote a book

 $S \Rightarrow NP VP$

 $NP \Rightarrow Det N \mid N$

 $VP \Rightarrow V NP$

N ⇒ Ahmed | book

V ⇒ wrote

 $Det \Rightarrow a$

[S [NP [N Ahmed]] [VP [V wrote] [NP[Det a][N book]]]]

S = Karim goes to school

 $S \Rightarrow NP VP$

 $NP \Rightarrow N$

 $VP \Rightarrow V PP$

 $PP \Rightarrow P N$

N ⇒ Karim | school

 $V \Rightarrow goes$

 $P \Rightarrow to$

[S[NP [N Karim]][VP[V goes][PP[P to][N school]]]]

$$S = 0$$

$$S \Rightarrow VP NP$$

$$VP \Rightarrow V N$$

$$NP \Rightarrow Det N$$

$$N \Rightarrow label{eq:N}$$

$$V\Rightarrow$$
 $\overset{\sim}{}$

Det
$$\Rightarrow$$
 ال

[[درس N][ال NP[Det][[أحمد N][كتب S[VP[V]]]

 $S \Rightarrow VP PP$

 $VP \Rightarrow V N$

 $PP \Rightarrow P NP$

 $NP \Rightarrow Det N$

 $N \Rightarrow$ مدرسة | كريم

یدهب **د** ۷

 $P \Rightarrow$ الى

 $Det \Rightarrow U$

[[مدرسة N][ال NP[Det][إلى PP[P][[كريم N][بذهب S[VP[V]]

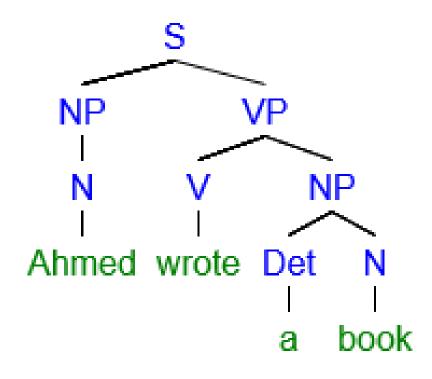
A syntax tree (or parse tree, or constituency tree) is a graphical representation of the syntactic structure of a sentence or phrase in natural language

Key elements:

- Nodes: words and phrases
- Edges: relationships between words and phrases
- Root node: labelled as S (Sentence)
- Leaves: individual words
- Branching: hierarchical organization of words and phrases

S = Ahmed wrote a book

 $S \Rightarrow NP VP$


 $NP \Rightarrow Det N \mid N$

 $VP \Rightarrow V NP$

N ⇒ Ahmed | book

V ⇒ wrote

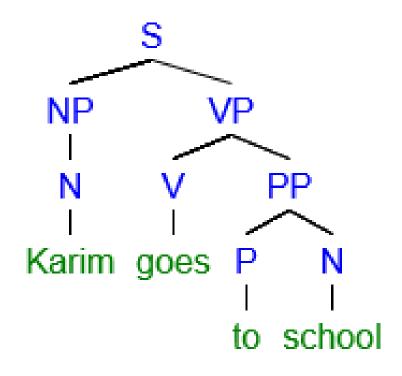
 $Det \Rightarrow a$

[S [NP [N Ahmed]] [VP [V wrote] [NP[Det a][N book]]]]

S = Karim goes to school

 $S \Rightarrow NP VP$

 $NP \Rightarrow N$


 $VP \Rightarrow VPP$

 $PP \Rightarrow P N$

N ⇒ Karim | school

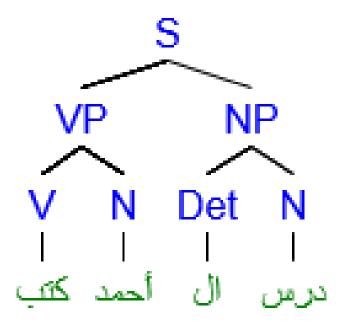
 $V \Rightarrow goes$

 $P \Rightarrow to$

[S[NP [N Karim]][VP[V goes][PP[P to][N school]]]]

$$S = 0$$

 $S \Rightarrow VP NP$


 $VP \Rightarrow V N$

 $NP \Rightarrow Det N$

 $N \Rightarrow 1$

 $V\Rightarrow$ کتب

ال ⇒ Det

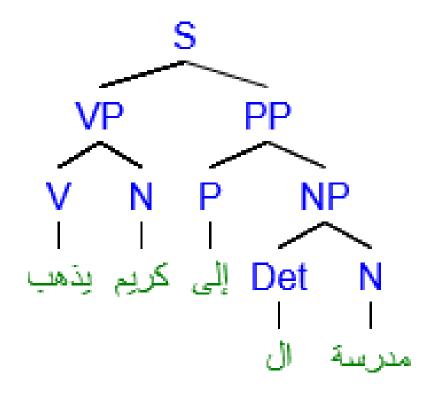
[[درس N][ال NP[Det][[أحمد N][كتب S[VP[V]]]

يذهب كريم إلى المدرسة = S

 $S \Rightarrow VP PP$

 $VP \Rightarrow V N$

 $PP \Rightarrow P NP$


 $NP \Rightarrow Det N$

 $N \Rightarrow$ مدرسة | كريم

يذهب ⇒ **ب**

 $P \Rightarrow$ إلى

Det \Rightarrow ال

[[مدرسة N][ال NP[Det][إلى PP[P][[كريم N][يذهب S[VP[V]]

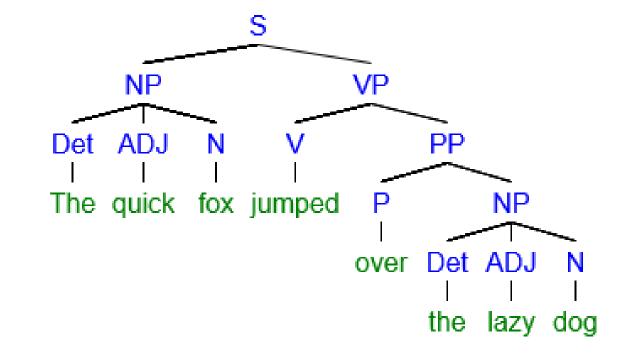
S = The quick fox jumped over the lazy dog

 $S \Rightarrow NP VP$

NP ⇒ Det ADJ N

 $VP \Rightarrow V PP$

 $PP \Rightarrow P NP$


 $N \Rightarrow fox \mid dog$

V ⇒ jumped

ADJ ⇒ quick | lazy

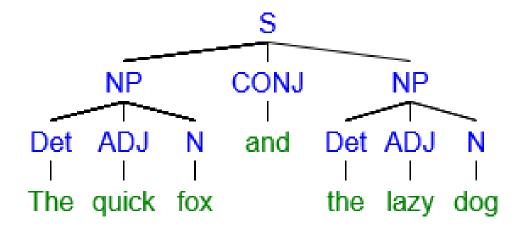
 $P \Rightarrow over$

 $Det \Rightarrow the$

[S[NP[Det The][ADJ quick][N fox]][VP[V jumped][PP[P over][NP[Det the][ADJ lazy][N dog]]]]

S = The quick fox and the lazy dog

S ⇒ NP CONJ NP


NP ⇒ Det ADJ N

 $CONJ \Rightarrow and$

 $N \Rightarrow fox \mid dog$

ADJ ⇒ quick | lazy

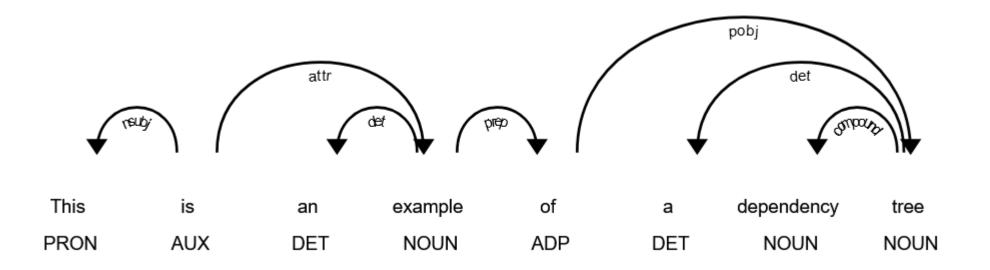
 $Det \Rightarrow the$

[S[NP[Det The][ADJ quick][N fox]][CONJ and][NP[Det the][ADJ lazy][N dog]]]

Exercise: Generate syntax trees for the following sentences:

S1 = The tiger is extremely dangerous

Dependency parsing


Dependency parsing consists of discovering **dependencies** between **words** in a sentence.

Dependencies are **word-word relations** or links that are typically asymmetric. These relations are established based on the positional relationship between words within a sentence:

- Unravelling the relationships between words in a sentence
- Analyzing how words depend on one another
- Representing syntactic and semantic relationships within the sentence

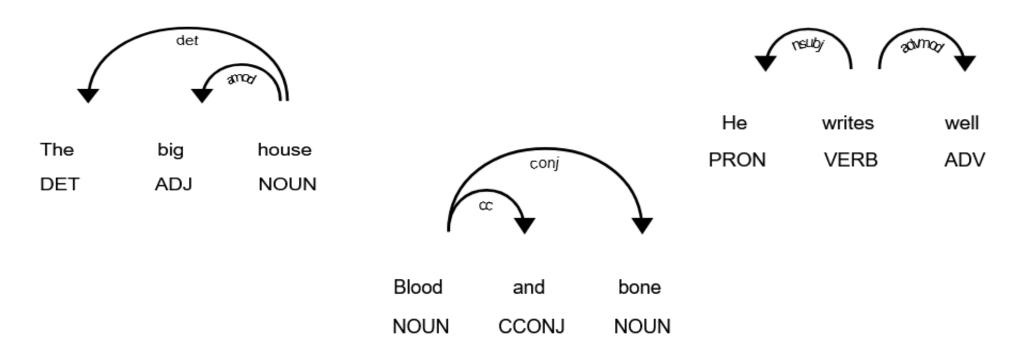
Dependency Tree

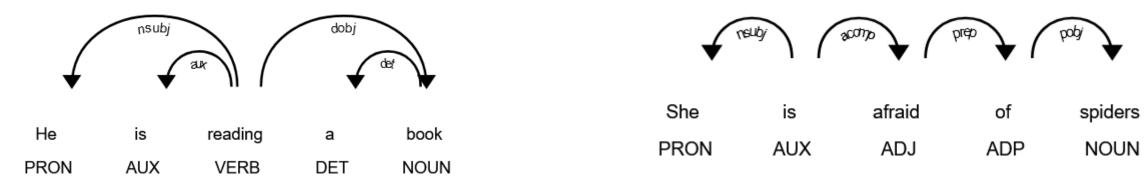
Dependency trees consist of **nodes** and directed **edges**. Each word in a sentence is represented as a node, and the relationships between these words are depicted as directed edges connecting the nodes. These directed edges indicate which word **governs** or **modifies** another word

Dependency Relationships

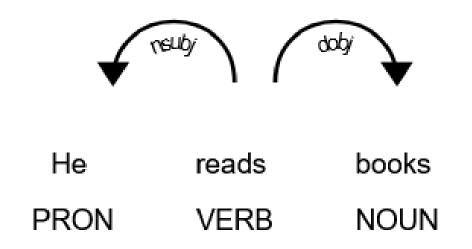
Discovering dependency relationships helps us answer essential questions about a sentence's structure:

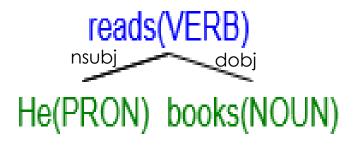
- What is the subject of the sentence?
- Which words are objects of verbs?
- How do adjectives modify nouns?
- What are the adverbs modifying?

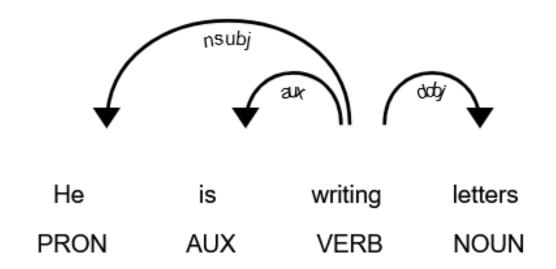

Main Dependency Relationships

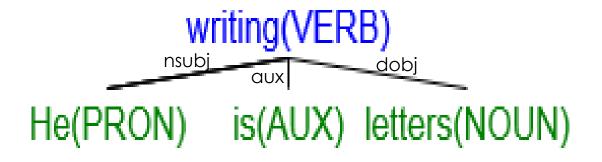

Dependency	Example
Subject-Verb: represents the relationship between the subject and the governing verb. (e.g. in the sentence "He wrote" "He" has a subject-verb dependency with "wrote."	He writes PRON VERB
Object-Verb: indicates the direct object of a verb. (e.g: In "He reads books," "books" has an object-verb dependency with "reads."	He reads books PRON VERB NOUN
Modifier-Head: captures how words modify other words. (e.g: In "The big house," "big" has a modifier-head dependency with "house."	The big house DET ADJ NOUN
Adverbial-Verb: demonstrates how adverbs modify verbs. (e.g: In "He writes well," "well" has an adverbial-verb dependency with "writes."	He writes well PRON VERB ADV

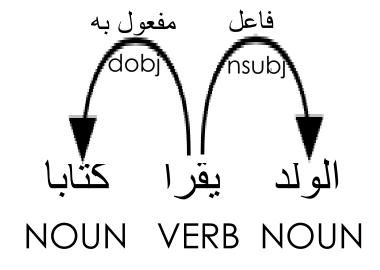
Universal Dependency Types


det	Determiner relationship between a nominal head and the determiner	The red book
amod	Adjectival modifier that modifies the meaning of a noun	The big house
advmod	Adverbal modifier that modifies the meaning of a verb	He writes well
nsubj	Entity that acts as the subject or agent in a clause	She eats apples
cc/conj	Linkages related to words connected by coordinating conjunctions	Blood and bone
aux	Auxiliary or secondary verb in the clause.	He is reading a book
acomp	Adjective complement, complementing or modifying the verb	She is afraid of spiders
prep	Prepositional modifier that modifies nouns, verbs, adjectives, or prepositions	Over the table
pobj	Object of a preposition, typically the head of a noun phrase following a preposition	Over the table
dobj	Direct object, represents the noun or noun phrase that directly receives the action of the verb	She eats apples

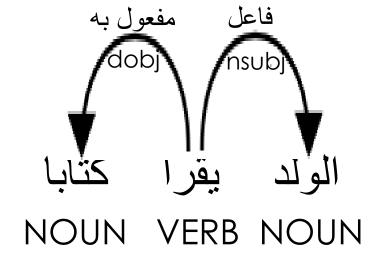

Universal Dependency Types

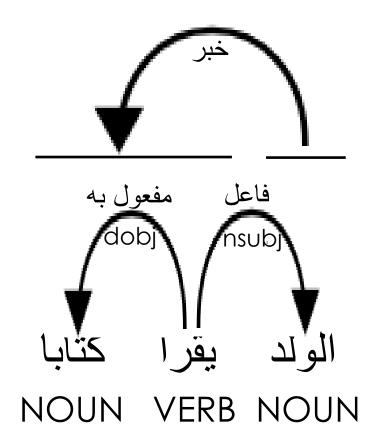


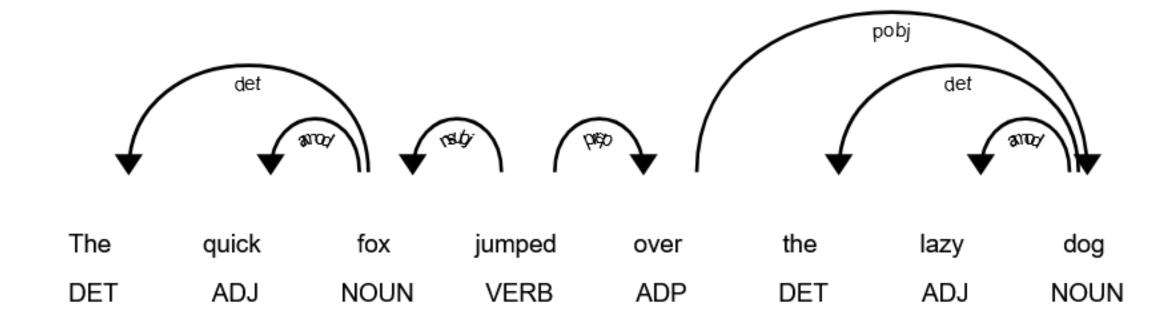

He reads books



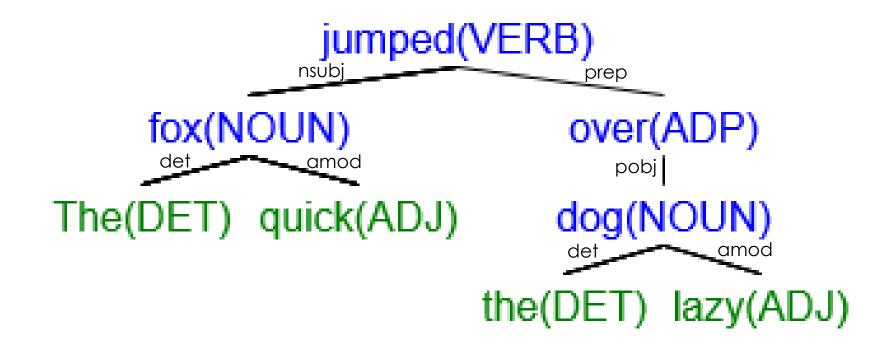
He is writing letters




يقرأ الولد كتابا



الولد يقرأ كتابا



The quick fox jumped over the lazy dog

The quick fox jumped over the lazy dog

