Khemis Miliana University

Faculty of Science and Technology

Mathematics and Computer Science Department

Alle (upad —dalad gy (M dasla
L 51 53001 g o glal) Al
Y oY) g cilualy) ad

Module : Operations Research 1

Responsible: Dr. |. Ait Abderrahim
Tutorial sheet 3

Problem: Network flow problem (Transportation problem)

Task: Solve the problem using c++/python programming language.

Solution: cpp 1

#include <stdio.h>
#include <imsl.h>

#define NS 5
#define ND 6

int main () {
float cmin, *x;
float sup[NS] { 300, 300, 600, 600, 600 };
float dem[ND] = { 200, 100, 300, 600, 600, 600 };
float cost[NS] [ND] = {
{ 1000, 1000, 1000, 16, 10, 12 1},
{ 1000, 1000, 1000, 15, 14, 17 1},
{ 6, 8, 10, 0, 1000, 1000 1},
{7, 11, 11, 1000, O, 1000 1},
{4, 5, 12, 1000, 1000, O }
}i
x = imsl f transport (NS, ND, sup, dem, &cost[0][0],

IMSL TOTAL COST, &cmin, 0);

printf ("Minimum cost is $%.2f", cmin);

imsl f write matrix("Solution Matrix", NS, ND, x,
IMSL_NO_ROW_LABELS, IMSL_NO_COL_LABELS, 0);

imsl free(x);
return 1;

Solution: Python

Import PuLP modeler functions
from pulp import *

Creates the 'prob' variable to contain the problem data
prob = LpProblem("Material Supply Problem", LpMinimize)

Creates a list of all the supply nodes
factories — ["A", "B", "C"]

node

supply = {"A": 100, "B": 200, "C":200}

Creates a list of all demand nodes
projects = ["l", "2", "3"]

Creates a dictionary for the number of units of supply for each supply

Creates a dictionary for the number of units of demand for each demand

Alle (upad —dalad gy (M dasla
L 51 53001 g o glal) Al
Y oY) g cilualy) ad

Khemis Miliana University

DALY
BOUNAAMA

UNIVERSITE

Faculty of Science and Technology

Mathematics and Computer Science Department

Module : Operations Research 1

Responsible: Dr. |. Ait Abderrahim

node

demand = {
"1": 50,
"2": 150,
"3": 300,

}

Intermediate nodes
warehouses=["P", "Q"]

Creates a list of costs of each transportation path

costs 1 = [# warehouses
[3,2], # A factories
(4,3], # B
[2.5,3.5] # C

]

costs 2 = [# projects

[2,1,4]1, # P warehouses
(3,2,5], # Q
]

The cost data is made into a dictionary
costs 1 = makeDict([factories, warehouses], costs 1, 0)

The cost data is made into a dictionary

costs_ 2 = makeDict ([warehouses, projects], costs 2, 0)
Creates a list of tuples containing all the possible routes for transport
Routes = [(w, b) for w in warehouses for b in projects]

A dictionary called 'Vars' is created to contain the referenced
variables (the routes)

vars = LpVariable.dicts ("Route", (warehouses, projects), 0, None,
LpInteger)

Creates a list of tuples containing all the possible routes for transport
Routes 2 = [(w, b) for w in warehouses for b in projects]

A dictionary called 'Vars 2' is created to contain the referenced
variables (the routes)

vars_2 = LpVariable.dicts ("Route", (warehouses, projects), 0, None,
LpInteger)

The objective function is added to 'prob' first
prob += (
lpSum([vars[w] [b] * costs 1[w
lpSum([vars 2[w] [b] * costs 2[w][
"Sum of Transporting Costs",

] [b] for (w, b) in Routes]) +
b] for (w, b) in Routes 2]),

)

The supply maximum constraints are added to prob for each supply node
(factories)
for w in factories:
prob += (
lpSum([vars([w] [b] for b in warehouses]) <= supplyl[w],
"Sum of Products out of factories %s" % w,

Khemis Miliana University

DALY
BOUNAAMA

UNIVERSITE

Faculty of Science and Technology

Mathematics and Computer Science Department

Alle (upad —dalad gy (M dasla

Lo sl sl 5 bl 205

Y oY) g bl) @«.43

Module : Operations Research 1

Responsible: Dr. |. Ait Abderrahim

)

(project)
for b in projects:
prob += (
lpSum([vars_2[w] [b] for w in warehouses]) >= demand[b],

"Sum of Products into projects%s" % b,

)

ne shipped out.
for w in warehouses:

[

"Sum of Products out of warehouse %s" % w,

)

The problem is solved using PulLP's choice of Solver
prob.solve ()

Print the variables optimized value
for v in prob.variables():
print (v.name, "=", v.varValue)

The optimised objective function value is printed to the screen
print ("Value of Objective Function = ", value (prob.objective))

The demand minimum constraints are added to prob for each demand node

Transshipment constraints: What is shipped into a transshipment node must

prob += (
lpSum([vars[f] [w] for f in factories]) - lpSum([vars 2[w] [p]
in projects])== 0,

for p

Correct answer:

