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Problem: Network flow  problem (Transportation problem) 

Task: Solve the problem using c++/python programming language. 

Solution: cpp 1 

#include <stdio.h> 

#include <imsl.h> 

 

#define NS 5 

#define ND 6 

 

int main() { 

      float cmin, *x; 

      float sup[NS] = { 300, 300, 600, 600, 600 }; 

      float dem[ND] = { 200, 100, 300, 600, 600, 600 }; 

      float cost[NS][ND] = { 

             { 1000, 1000, 1000, 16, 10, 12 }, 

             { 1000, 1000, 1000, 15, 14, 17 }, 

             { 6, 8, 10, 0, 1000, 1000 }, 

             { 7, 11, 11, 1000, 0, 1000 }, 

             { 4, 5, 12, 1000, 1000, 0 } 

      }; 

 

      x = imsl_f_transport(NS, ND, sup, dem, &cost[0][0], 

             IMSL_TOTAL_COST, &cmin, 0); 

 

      printf("Minimum cost is $%.2f", cmin); 

 

      imsl_f_write_matrix("Solution Matrix", NS, ND, x, 

             IMSL_NO_ROW_LABELS, IMSL_NO_COL_LABELS, 0); 

 

      imsl_free(x); 

      return 1; 

} 

 

Solution: Python 
# Import PuLP modeler functions 

from pulp import * 

 

# Creates the 'prob' variable to contain the problem data 

prob = LpProblem("Material Supply Problem", LpMinimize) 

 
# Creates a list of all the supply nodes 

factories = ["A", "B", "C"] 

 

# Creates a dictionary for the number of units of supply for each supply 

node 

supply = {"A": 100, "B": 200, "C":200} 

 

# Creates a list of all demand nodes 

projects = ["1", "2", "3"] 

 

# Creates a dictionary for the number of units of demand for each demand 
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demand = { 

    "1": 50, 

    "2": 150, 

    "3": 300, 

} 

 

# Intermediate nodes 

warehouses=["P","Q"] 

 

# Creates a list of costs of each transportation path 

costs_1 = [  # warehouses 

    [3,2],  # A factories 

    [4,3],  # B 

    [2.5,3.5] # C 

] 

 

costs_2 = [  # projects 

    [2,1,4],  # P warehouses 

    [3,2,5],  # Q 

] 

 

# The cost data is made into a dictionary 

costs_1 = makeDict([factories, warehouses], costs_1, 0) 

 

# The cost data is made into a dictionary 

costs_2 = makeDict([warehouses, projects], costs_2, 0) 

# Creates a list of tuples containing all the possible routes for transport 

Routes = [(w, b) for w in warehouses for b in projects] 

 

# A dictionary called 'Vars' is created to contain the referenced 

variables(the routes) 

vars = LpVariable.dicts("Route", (warehouses, projects), 0, None, 

LpInteger) 

 

# Creates a list of tuples containing all the possible routes for transport 

Routes_2 = [(w, b) for w in warehouses for b in projects] 

 

# A dictionary called 'Vars_2' is created to contain the referenced 

variables(the routes) 

vars_2 = LpVariable.dicts("Route", (warehouses, projects), 0, None, 

LpInteger) 

 
# The objective function is added to 'prob' first 

prob += ( 

    lpSum([vars[w][b] * costs_1[w][b] for (w, b) in Routes]) + 

lpSum([vars_2[w][b] * costs_2[w][b] for (w, b) in Routes_2]), 

    "Sum_of_Transporting_Costs", 

) 

 
# The supply maximum constraints are added to prob for each supply node 

(factories) 

for w in factories: 

    prob += ( 

        lpSum([vars[w][b] for b in warehouses]) <= supply[w], 

        "Sum_of_Products_out_of_factories_%s" % w, 
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# The demand minimum constraints are added to prob for each demand node 

(project) 

for b in projects: 

    prob += ( 

        lpSum([vars_2[w][b] for w in warehouses]) >= demand[b], 

        "Sum_of_Products_into_projects%s" % b, 

    ) 

 

# Transshipment constraints: What is shipped into a transshipment node must 

ne shipped out. 

for w in warehouses: 

    prob += ( 

        lpSum([vars[f][w] for f in factories]) - lpSum([vars_2[w][p] for p 

in projects])== 0, 

        "Sum_of_Products_out_of_warehouse_%s" % w, 

    ) 

 
# The problem is solved using PuLP's choice of Solver 

prob.solve() 

 

# Print the variables optimized value 

for v in prob.variables(): 

    print(v.name, "=", v.varValue) 

     

# The optimised objective function value is printed to the screen 

print("Value of Objective Function = ", value(prob.objective)) 

 

Correct answer:  
 
 
 
 
 

 


