
Khemis Miliana University

 خميس مليانة –جامـعة جيلالي بونعامة

Faculty of Science and Technology كلية العلوم والتكنولوجيا

Mathematics and Computer Science Department قسم الرياضيات و الاعلام الالي

Module : Operations Research 1

Responsible: Dr. I. Ait Abderrahim

Tutorial sheet 3

Problem: Network flow problem (Transportation problem)

Task: Solve the problem using c++/python programming language.

Solution: cpp 1

#include <stdio.h>

#include <imsl.h>

#define NS 5

#define ND 6

int main() {

 float cmin, *x;

 float sup[NS] = { 300, 300, 600, 600, 600 };

 float dem[ND] = { 200, 100, 300, 600, 600, 600 };

 float cost[NS][ND] = {

 { 1000, 1000, 1000, 16, 10, 12 },

 { 1000, 1000, 1000, 15, 14, 17 },

 { 6, 8, 10, 0, 1000, 1000 },

 { 7, 11, 11, 1000, 0, 1000 },

 { 4, 5, 12, 1000, 1000, 0 }

 };

 x = imsl_f_transport(NS, ND, sup, dem, &cost[0][0],

 IMSL_TOTAL_COST, &cmin, 0);

 printf("Minimum cost is $%.2f", cmin);

 imsl_f_write_matrix("Solution Matrix", NS, ND, x,

 IMSL_NO_ROW_LABELS, IMSL_NO_COL_LABELS, 0);

 imsl_free(x);

 return 1;

}

Solution: Python
Import PuLP modeler functions

from pulp import *

Creates the 'prob' variable to contain the problem data

prob = LpProblem("Material Supply Problem", LpMinimize)

Creates a list of all the supply nodes

factories = ["A", "B", "C"]

Creates a dictionary for the number of units of supply for each supply

node

supply = {"A": 100, "B": 200, "C":200}

Creates a list of all demand nodes

projects = ["1", "2", "3"]

Creates a dictionary for the number of units of demand for each demand

Khemis Miliana University

 خميس مليانة –جامـعة جيلالي بونعامة

Faculty of Science and Technology كلية العلوم والتكنولوجيا

Mathematics and Computer Science Department قسم الرياضيات و الاعلام الالي

Module : Operations Research 1

Responsible: Dr. I. Ait Abderrahim
node

demand = {

 "1": 50,

 "2": 150,

 "3": 300,

}

Intermediate nodes

warehouses=["P","Q"]

Creates a list of costs of each transportation path

costs_1 = [# warehouses

 [3,2], # A factories

 [4,3], # B

 [2.5,3.5] # C

]

costs_2 = [# projects

 [2,1,4], # P warehouses

 [3,2,5], # Q

]

The cost data is made into a dictionary

costs_1 = makeDict([factories, warehouses], costs_1, 0)

The cost data is made into a dictionary

costs_2 = makeDict([warehouses, projects], costs_2, 0)

Creates a list of tuples containing all the possible routes for transport

Routes = [(w, b) for w in warehouses for b in projects]

A dictionary called 'Vars' is created to contain the referenced

variables(the routes)

vars = LpVariable.dicts("Route", (warehouses, projects), 0, None,

LpInteger)

Creates a list of tuples containing all the possible routes for transport

Routes_2 = [(w, b) for w in warehouses for b in projects]

A dictionary called 'Vars_2' is created to contain the referenced

variables(the routes)

vars_2 = LpVariable.dicts("Route", (warehouses, projects), 0, None,

LpInteger)

The objective function is added to 'prob' first

prob += (

 lpSum([vars[w][b] * costs_1[w][b] for (w, b) in Routes]) +

lpSum([vars_2[w][b] * costs_2[w][b] for (w, b) in Routes_2]),

 "Sum_of_Transporting_Costs",

)

The supply maximum constraints are added to prob for each supply node

(factories)

for w in factories:

 prob += (

 lpSum([vars[w][b] for b in warehouses]) <= supply[w],

 "Sum_of_Products_out_of_factories_%s" % w,

Khemis Miliana University

 خميس مليانة –جامـعة جيلالي بونعامة

Faculty of Science and Technology كلية العلوم والتكنولوجيا

Mathematics and Computer Science Department قسم الرياضيات و الاعلام الالي

Module : Operations Research 1

Responsible: Dr. I. Ait Abderrahim
)

The demand minimum constraints are added to prob for each demand node

(project)

for b in projects:

 prob += (

 lpSum([vars_2[w][b] for w in warehouses]) >= demand[b],

 "Sum_of_Products_into_projects%s" % b,

)

Transshipment constraints: What is shipped into a transshipment node must

ne shipped out.

for w in warehouses:

 prob += (

 lpSum([vars[f][w] for f in factories]) - lpSum([vars_2[w][p] for p

in projects])== 0,

 "Sum_of_Products_out_of_warehouse_%s" % w,

)

The problem is solved using PuLP's choice of Solver

prob.solve()

Print the variables optimized value

for v in prob.variables():

 print(v.name, "=", v.varValue)

The optimised objective function value is printed to the screen

print("Value of Objective Function = ", value(prob.objective))

Correct answer:

