
Chapter 3 Real Functions of a Real

Variable

1 Introduction

This chapter serves to reinforce the notions already acquired by the student
during their secondary education. We will review known concepts to refresh
the student’s memory and provide the necessary tools that will enable them
to approach the new concepts they will need in their university-level analysis
studies. In the previous chapter, we discussed the subject of functions and
mappings in a general context where f is a function from a given set E to
another set F . In this chapter, the set E will be R or a subset of R, which
is why it’s called functions of a real variable. The set F will also be R or
a subset of R, which explains the designation of real-valued functions. In
other words, this chapter is dedicated to functions where the variable is real,
and the values of these functions are also real.

2 Generalities

Definition 2.1 We call a real function of a real variable any function

f : D ⊆ R −→ R
x 7−→ f(x)

In all what follows, we consider the function f as in definition5.1

Definition 2.2 • The domain of definition of the function f is

Df =
{
x ∈ R | ∃y ∈ R, y = f(x)

}
.

• The graph of f is a subset of R2 denoted by Gf and is defined by
Gf =

{
(x, y) | x ∈ Df et (y = f(x))

}
.
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• The representative curve of f often denoted by (Cf ) where (Γ) is the
set of points M (x, y) with (x, y) ∈ Gf .

Definition 2.3 • A function f is called an even function if

∀x ∈ D, (−x ∈ D) ∧ (f(−x) = f(x)) .

• The curve of an even function is symmetric with respect to the y-axis.

• A function f is called an odd if

∀x ∈ D, (−x ∈ D) ∧ (f(−x) = −f(x)) .

• Studying the parity of a function involves determining whether it is
even, odd, or neither.

• The curve of an odd function is symmetric with respect to the origin
of the coordinate system

• A function f is said periodic and p is its period if p is the smallest
positive real number that satisfies

∀x ∈ D,
(

(x+ p) ∈ D
)
∧
(
f(x+ p) = f(x)

)
.

Example 2.1 • The function x 7−→ x4 is an even function because
∀x ∈ R,−x ∈ R ∧ f(−x) = (−x)4 = f(x).

• The function x 7−→ 1

x
is an odd function because

∀x ∈ R∗,−x ∈ R∗ ∧ f(−x) =
1

−x
= −1

x
= −f(x) .

• The function x 7−→ cos(x) is periodic of period 2π because
∀x ∈ R,

(
(x+ 2π) ∈ R

)
∧ f(x+ 2π) = cos(x+ 2π) = cos(x) = f(x) .

Remark 2.1 Before studying the parity of a function, it is essential to en-
sure that its domain of definition is symmetric with respect to 0.
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Example 2.2 Let us consider the function
f : R −→ R

x 7−→ f(x) =
ln(1 + x)

|x|
Df = ]−1 0[ ∪ ]0 +∞[
We cannot discuss the parity of this function because its domain of defini-
tion is not symmetric with respect to zero.

Definition 2.4 • It is said that f is bounded above on D if and only if

∃M ∈ R tel-que ∀x ∈ D, f(x) ≤M

• It is said that f is bounded below on D if and only if

∃m ∈ R tel-que ∀x ∈ D, f(x) ≥ m

• It is said that f is bounded on D if and only if it is both bounded above
and bounded below.

∃M ∈ R, ∃m ∈ R such that ∀x ∈ D, m ≤ f(x) ≤M

or
∃M ∈ R∗+ such that ∀x ∈ D,

∣∣f(x)
∣∣ ≤M

• It is said that f is non- decreasing or that it preserves order on D if
and only if

∀x, x′ ∈ D;
(
x < x′ =⇒ f(x) ≤ f(x′)

)
• It is said that f is decreasing or that it does not preserve order on D

if and only if

∀x, x′ ∈ D;
(
x < x′ =⇒ f(x) ≥ f(x′)

)
• The non- decreasing function preserves order, while the decreasing

function reverses the order.

3 Limits

Definition 3.1 Let x0 ∈ D,
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• We say that f(x) tends towards l as x tends to x0 and we write

lim
x→x0

f(x) = l iff ∀ε > 0, ∃ η > 0; ∀x ∈ D,
(
|x − x0| < η =⇒

|f(x)− l| < ε
)

• It is said that f(x) tends to l as x approaches x0 from above iff

∀ε > 0,∃ η > 0; ∀x ∈ D,
(

0 < x− x0 < η =⇒ |f(x)− l| < ε
)

and we

write
lim
x→x0
>

f(x) = lim
x→x+0

f(x) = l. This limit is also called a right-hand limit

of x0.

• It is said that f(x) tends to l when x approaches x0 from below iff

∀ε > 0,∃ η > 0; ∀x ∈ D,
(
− η < x− x0 < 0 =⇒ |f(x)− l| < ε

)
and

we write
lim
x→x0
<

f(x) = lim
x→x−0

f(x) = l. This limit is also called a left-hand limit

of x0.

Proposition 3.2
(

lim
x→x0

f(x) = l
)
⇐⇒

(
lim
x→x0
<

f(x) = lim
x→x0
>

f(x) = l
)

Example 3.1 f(x) =
x

|x|
+ 1.

We cannot calculate the limit of this function at 0 because it is not defined
at 0. However, we can calculate the right-hand and left-hand limits of 0.

lim
x→0
>

f(x) = lim
x→0
>

x

x
+ 1 = 2

and
lim
x→0
<

f(x) = lim
x→0
<

x

−x
+ 1 = 0

then lim
x→0

f(x) doesn’t exist because lim
x→0
>

f(x) 6= lim
x→0
<

f(x)

Proposition 3.3 The limit at a point, when it exists, is unique.
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3.1 Elementary Properties

Proposition 3.4 Let f and g be two functions defined in the neighborhood
of x0 such that 

lim
x→x0

f(x) = 0,

et

g is bounded,

then lim
x→x0

f(x)g(x) = 0.

Example 3.2 According to the proposition3.4

lim
x→0
>

√
x cos

π

x
= 0

because lim
x→0
>

√
x = 0 and ∀x ∈ R∗ :

∣∣ cos
(
π
x

) ∣∣ ≤ 1 (boundedness).

Proposition 3.5 (Squeeze Theorem)

The squeeze theorem (also known as sandwich theorem) states that if a
function f(x) lies between two functions g(x) and h(x) and the limits of
each of g(x) and h(x) at a particular point are equal (to L), then the limit
of f(x) at that point is also equal toL.
Mathematically the squeeze theorem is defined as follows:
Let f, g, h be real functions definied in the neighborhood of x0 such that

g(x) ≤ f(x) ≤ h(x),

and

lim
x→x0

g(x) = lim
x→x0

h(x) = l,

then lim
x→x0

f(x) = l.

Remark 3.1 The Squeeze Theorem remains valid as x approaches infinity.

Example 3.3 soit f(x) =
1

1 + cos(x)
. On a: lim

x→+∞

1

1 + cos(x)
= 0 (∗).

En effet,
∀x ∈ Df , −1 ≤ cos(x) ≤ 1
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et en ajoutant x à tous les membres de l’inégalité, on obtient

x− 1 ≤ x+ cos(x) ≤ x+ 1,

quand on passe à l’inverse on trouve

1

x+ 1
≤ 1

x+ cos(x)
≤ 1

x− 1
.

Il est facile de voir que

lim
x→+∞

1

x+ 1
= lim

x→+∞

1

x− 1
= 0.

The result (∗) is obtained directly using the Squeeze Theorem.

3.2 Indeterminate forms

When the rules for direct limit calculation don’t work, we end up with so-
called indeterminate forms. Some common indeterminate forms in mathe-

matics include: ∞−∞, 0.∞,∞
∞
,
0

0
, 1∞, 00,∞0. To resolve the indeterminacy,

you can refer to classical methods typically learned in secondary school when
dealing with polynomials or simple fractions. In many cases, you can use a

rule called L’Hôpital’s Rule to resolve indeterminate forms like
∞
∞

and
0

0
.

However, for forms like 1∞, 00, and ∞0”, it’s common to use logarithms to
simplify them into more manageable forms.

Example 3.4 lim
x→0

xx = 00 FI

To resolve this indeterminacy, you can use the following technique:

lim
x→0

xx = lim
x→0

ex ln(x) = eo = 1.

It is worth noting that

lim
x→0

x ln(x) = 0, ax = ex ln(a).

The following example serves as a basic tool for resolving the indeterminate
form 1∞, where we often reduce it to one of the following representations:

(1 + x)
1
x , (1− x)

1
x ,

(
1 +

1

x

)x
,

(
1− 1

x

)x
.
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Example 3.5 lim
x→0

(1 + x)
1
x = e.

Solution 3.6 lim
x→0

(1 + x)
1
x = lim

x→0
e

1
x
ln(1+x)

We know that: lim
x→0

ln(x+ 1)

x
= 1 = lim

x→0

1

x
ln(x+ 1).

Consequently: lim
x→0

(1 + x)
1
x = lim

x→0
e

1
x
ln(1+x) = e1 = e.

Through a simple change of variable, it can be shown that

lim
x→0

(1− x)
1
x = e−1

lim
x→+∞

(
1 + 1

x

)x
= e

lim
x→+∞

(
1− 1

x

)x
= e−1

In conclusion, lim
A→0

(1 +A)
1
A = e. This important result is generally used to

calculate the limit in the case of the indeterminate form 1∞.

Example 3.6 Calculate lim
x→+∞

(
1 +

3

x

)x
Solution 3.7 We make the change of variable y =

3

x
alors x =

3

y
, So when

x→ +∞ we have y → 0, and it yields

lim
x→+∞

(
1 +

3

x

)x
= lim

y→0
(1 + y)

3
y = lim

y→0

[
(1 + y)

1
y
]3

= e3.

4 continuity

Let x0 ∈ D.
f : D ⊆ R −→ R

x 7−→ y = f(x)

Definition 4.1 The function f is continuous in x0 if and only if

lim
x→x0

f(x) = f(x0).

Remark 4.1 We can only study the continuity of f at x0 if f is defined at
that point, meaning f(x0) exists.

Definition 4.2 1. We say that f is right-continuous at the point
x0. if and only if

lim
x→x0
>

f(x) = f(x0)
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2. We say that f is left-continuous at the point x0. if and only if

lim
x→x0
<

f(x) = f(x0)

3.
(
f iscontinuous en x0

)
⇐⇒

(
lim
x→x0
>

f(x) = lim
x→x0
<

f(x) = f(x0)
)

4. If f and g are two functions that are continuous at x0, then f + g and

f · g are continuous at x0, and if, furthermore, g(x0) 6= 0, then
f

g
is

continuous at x0.

5. If f : D −→ R is continuous at x0 and if g : f(D) −→ R is continuous
at f(x0) then (gof) is continuous at x0.

Example 4.1 We consider the function f defined on R by

f(x) =


0 si x ≤ 0,

x si 0 < x ≤ 1,

−x2 + 4x− 2 si 1 < x ≤ 3,

4− x si x > 3

It is obvious that we must study the continuity of f at points 0, 1 and 3.
• We study the continuity of f at the point 0

lim
x→0
>

f(x) = lim
x→0
>

x = 0 = lim
x→0
<

f(x) = f(0).

• We study the continuity of f at the point 1

lim
x→1
>

f(x) = lim
x→1
>

−x2 + 4x− 2 = 1 = lim
x→1
<

x = f(1).

• We study the continuity of f at the point 3

lim
x→3
>

f(x) = lim
x→3
>

4− x = 1 = lim
x→3
<

−x2 + 4x− 2 = f(3).

Theorem 4.3 (Intermediate Value Theorem)

• If f is continuous on [a b] and if λ is a real number between f(a) et
f(b), i.e., (f(a) ≤ λ ≤ f(b)) ou (f(b) ≤ λ ≤ f(a)) then there exists at
least one real number c ∈ [a b] such that f(c) = λ.
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• If f is continuous on [a b] and if f(a).f(b) < 0 then there exists at
least one real c ∈ [a b] such that f(c) = 0.

Remark 4.2 If f is a function defined from a domain I to a domain J
and we want to prove that for all y ∈ J , there exists an x ∈ I such that
y = f(x), we invoke the Intermediate Value Theorem. It should be noted
that this theorem confirms only the existence of x.

Example 4.2
f : R −→ R

x 7−→ f(x) = x3 + x2 − x− 2,
On peut utiliser le théorème des valeurs intermédiaires pour montrer que f
est surjective. En effet,
f est continue sur R, de plus lim

x→−∞
f(x) = −∞ et lim

x→+∞
f(x) = +∞ alors

d’aprs̀ le théorème des valeurs intermédiaires, pour tout y ∈ ]−∞ +∞[ , il
existe au moins x ∈ R tel-que y = f(x).

We can use the Intermediate Value Theorem to demonstrate that f is
surjective. Indeed,

f is continuous on R, and furthermore, limx→−∞ f(x) = −∞ and limx→+∞ f(x) =
+∞. According to the Intermediate Value Theorem, for any y ∈ ]−∞,+∞[ ,
there is at least one x ∈ R such that y = f(x).

Theorem 4.4 (The Bijection Theorem)

• If f is continuous and strictly monotonous on [a b] then f is a bijection
from [a b] to f ([a b]) .

• f−1 is also a bijection from f ([a b]) to [a b] , and it has the same di-
rection of variation as f.

• The two representative curves of f et f−1 are symmetric with respect
to the line with equation y = x.

Example 4.3
f : R −→ R+

x 7−→ f(x) = ex

f is continuous on R and ∀x ∈ R, f ′(x) = ex > 0, so f is continuous and
strictly increasing, then it has an inverse function.

f−1 : R+ −→ R
x 7−→ f(x) = ln(x)

We have x→ ln(x) is continuous and strictly increasing, (∀x ∈ R+f ′(x) =
1

x
> 0), Furthermore ln(ex) = x, and eln(x) = x.
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4.1 Elementary Inverse Functions

1. The function

f :
[
−π

2
π
2

]
−→ [−1 1]

x 7−→ f(x) = sin(x)

is continuous and strictly increasing, so it is bijective, and conse-
quently, it has an inverse function denoted as arcsin such that

f−1 : [−1 1] −→
[
−π

2
π
2

]
x 7−→ f−1(x) = arcsin(x)

and w have
y = sin(x)⇐⇒ x = arcsin(y)

sin(arcsin(x)) = x, et arcsin(sin(x)) = x.

2. The function

f : [0 π] −→ [−1 1]
x 7−→ f(x) = cos(x)

is continuous and strictly decreasing, so it is bijective, and conse-
quently, it has an inverse function denoted as arccos such that

f−1 : [−1 1] −→ [0 π]
x 7−→ f−1(x) = arccos(x)

and w have
y = cos(x)⇐⇒ x = arccos(y)

cos(arccos(x)) = x, et arccos(cos(x)) = x.

3. The function

f :
]
−π

2
π
2

[
−→ R

x 7−→ f(x) = tan(x)

is continuous and strictly increasing, so it is bijective, and conse-
quently, it has an inverse function denoted as arctan such that

f−1 : R −→
]
−π

2
π
2

[
x 7−→ f−1(x) = arctan(x)

and w have
y = tan(x)⇐⇒ x = arctan(y)

tan(arctan(x)) = x, et arctan(tan(x)) = x.
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4. The function

f : ]0 π[ −→ R
x 7−→ f(x) = cotan(x)

is continuous and strictly decreasing, so it is bijective, and conse-
quently, it has an inverse function denoted as arccotan such that

f−1 : R −→ ]0 π[
x 7−→ f−1(x) = arcotan(x)

and w have
y = cotan(x) ⇐⇒ x = arccotan(y)

cotan(arccotan(x)) = x, et arccotan(cotan(x)) = x.

4.2 Continuity Extension

Let f : D → R A function which is not defined at x0, but lim
x→x0

f(x) = a ∈ R.

Then we can define a new function that is continuous at x0 denoted by
∼
f as

follow:

∼
f(x) =

{
f(x) if x 6= x0,

a if x = x0,

∼
f is called the continuity extension of f at x0.

Example 4.4 The function x→ f(x) =
ln(x+ 1)

x
is not definet at x0 = 0,

but its limit as x → 0 exists and we have lim
x→0

ln(x+ 1)

x
= 1. Then f

admits a continuity extension at x0 = 0

∼
f(x) =


ln(x+ 1)

x
if x 6= 0,

1 if x = 0,

5 Derivative

5.1 Definitions

In all that follows, we consider a function f : D ⊆ R −→ R, and x0 ∈ R.
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Definition 5.1 1. f is differentiable at x0 ∈ D if and only if the follow-
ing limit exists and is finite

lim
x→x0

f(x)− f(x0)

x− x0
= a ∈ R (5.1)

2. The number a, when it exists, is called the derivative of f at point x0,
and we write f ′(x0) = a.

3. The geometric interpretation of a: it represents the slope of the tangent
to the curve (Cf ) at the point A(x0, f(x0)). Furthermore, the equation
of this tangent is

(4) : y = a(x− x0) + f(x0)

4. If the right-hand and left-hand derivatives at x0 exist and are equal,
then f is differentiable at x0, and conversely. In other words,(
f is differentiable at x0

)
⇐⇒

(
lim
x→x0
>

f(x)− f(x0)

x− x0
= lim

x→x0
<

f(x)− f(x0)

x− x0
= f ′(x0)

)

5. Si lim
x→x0
>

f(x)− f(x0)

x− x0
= a1, and lim

x→x0
<

f(x)− f(x0)

x− x0
= a2, with a1 6= a2,

then f is not differentiable at x0

6. If in the equation 5.1 we remplace x− x0 by h we will have

lim
h→0

f(x0 + h)− f(x0)

h
= a

7. If f is differentiable at x0 then f is continuous at x0. Warning, the
converse is not true, meaning that if f is continuous at x0, we cannot
make any claims about its differentiability at x0; it needs to be stud-
ied. Furthermore, if f is not differentiable at x0, we cannot make any
conclusions regarding continuity at x0; it also needs to be studied.

Remark 5.1 To answer the question of studying the continuity and differ-
entiability of f, you can follow one of the two following paths.
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1. We start by studying continuity, and if f is not continuous at x0, we
stop and conclude that f is not differentiable at x0. However, if f is
continuous at x0, we must then proceed to study differentiability at x0.

2. We start by studying differentiability at x0, and if f is differentiable
at x0, we directly conclude that f is continuous at x0. However, if f
is not differentiable at x0, we must then proceed to study continuity at
x0.

3. A function f may not be differentiable at x0 and not continuous at x0.

Example 5.1 We consider the function f defined on R as follow f(x) =
|x− 1|

It is clear that we should study the continuity and differentiability at x0 = 1.
We choose to begin with the study of differentiability.

lim
x→1
>

f(x)− f(1)

x− 1
= lim

x→1
>

(|x− 1|)− 0

x− 1

= lim
x→1
>

x− 1

x− 1

= 1

lim
x→x0
<

f(x)− f(1)

x− 1
= lim

x→1
>

(|x− 1|)− 0

x− 1

= lim
x→1
<

− (x− 1)

x− 1

= −1

Since 1 6= −1, then f is not differentiable at x0 = 1 and in this case, we
cannot make any conclusions regarding continuity; we need to study it. To
do this, we calculate the following two limits:

lim
x→1
<

|x− 1| = lim
x→1
<

−x+ 1 = 0 = f(1)

lim
x→1
>

|x− 1| = lim
x→1
>

x− 1 = 0 = f(1)

hence f is continuous at x0 = 1 because lim
x→1
<

|x− 1| = lim
x→1
>

|x− 1| = f(1).
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5.2 Rules of Differentiation

We begin by recalling the rules for differentiating common functions.

f(x) a xn
1

x

√
x ex ln(x) cos(x) sin(x)

f ′(x) 0 nxn−1 − 1

x2
1

2
√
x

ex
1

x
− sin(x) cos(x)

Df R R R∗ R+ R R∗+ R R

If f and g are two differentiable functions on D ⊆ R, then the functions
constructed from these two functions are differentiable, and we have

1. (f + g)
′

= f
′
+ g

′

2. (fg)
′

= f
′
g + g

′
f

3. If g 6= 0 on D,
(
f

g

)′
=
f
′
g − g′f
g2

4. (fn)
′

= nf
′
fn−1, n ∈ N

5. We use the following notations f = f (0), f
′

= f (1), f
′′

= f (2), . . . , f (n) =(
f (n−1)

)′
,

6. If a function f is differentiable several times on D ⊂ R, we can define
the following sets

Definition 5.2 Let D ⊂ R be an open interval. Let n ∈ N∗. We say
that f : D −→ R is of class Cn if it is differentiable n times, and if
the nth derivative is continuous. If f is of class Cn for all n ∈ N, it is
called of class C∞ or infinitely differentiable. f is said to be of class
C0 if it is continuous on D.

7. (fg)(n) =
n∑
i=0

n!

i!(n− i)!
f (i)g(n−i).

8. Now, suppose that f is differentiable on D and g is differentiable on
f (D) alors gof est dérivable sur D et on a

∀x ∈ D, (gof)
′
(x) = f

′
(x).g′ [f(x)] .
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9. Let f a bijection from D to f (D) and let f−1 its inverse function. If
f is differentiable on D and if f ′ does not equal zero on D then f−1 is
differentiable f (D) et on a

∀y0 ∈ f (D) ,
(
f−1

)′
(y0) =

1

f ′ [f−1(y0)]

Remark 5.2 To calculate f−1(y0), you need to find x0 ∈ D that satisfies
the equation y0 = f(x0), and then you will have f−1(y0) = x0. Consequently,(

f−1
)′

(y0) =
1

f ′(x0)
.

Example 5.2 Let f : x→ f(x) = x+ ex

Prove that f is bijective on R
Calculate

(
f−1

)′
(1).

Solution 5.3 f is continuous on R, and ∀x ∈ R, f ′(x) = 1 + ex > 0,
hence f is continuous and strictly monotonous and therefore f−1 exists. To
calculate

(
f−1

)′
(1), we first solve the equation f(x) = 1. The solution to

this equation is as follows:

f(x) = 1 =⇒ x+ ex = 1,

=⇒ x = 0,

It yields
f(0) = 1 =⇒ f−1(1) = 0

(
f−1

)′
(1) =

1

f ′ [f−1(1)]
,

=
1

f ′(0)
,

=
1

1 + e0
,

=
1

2
.
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5.3 Derivatives of Inverse Circular Functions

Proposition 5.4 The Circular Functions arcsin, arccos, arctan, arccotan are
differentiable over their domains of definition.

∀x ∈ ]−1 1[ , (arcsin)
′
(x) =

1√
1− x2

∀x ∈ ]−1 1[ , (arccos)
′
(x) =

−1√
1− x2

∀x ∈ R, (arctan)
′
(x) =

1

1 + x2

∀x ∈ R, (arccotan)
′
(x) =

−1

1 + x2

Example 5.3 Calculate the derivative of the function defined by

f(x) = arctan(x2 + 1)

We apply the rule of differentiation for a composite function and arctan .
The technique is very simple: we assume that

f(x) = arcsin(g(x)) with g(x) = 1 + x2

and
∀x ∈ R, f ′(x) = g′(x)× (arctan)′ (g(x)) ,

g′(x) = 2x,

(arctan)′ (x) =
1

1 + x2
,

(arctan)′ (g(x)) =
1

1 + (g(x))2
,

Which gives

∀x ∈ R, f ′(x) =
2x

1 + (1 + x2)2

5.4 Important Theorems

Theorem 5.5 Rolle’s Theorem
Let f a continuous function on [a b] , and differentiable on ]a b[ such that
f(a) = f(b) then,

∃c ∈ ]a b[ , f ′(c) = 0.
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Theorem 5.6 Finite-Increment Theorem
Let f a continuous function on [a b] and differentiable on ]a b[ then

∃c ∈ ]a b[ , f ′(c) =
f(b)− f(a)

b− a

Theorem 5.7 L’Hôpital’s Rule
Let f, g two continuous functions over an interval D ⊆ R, except perhaps at
x0 ∈ D, if f(x0) = g(x0) = 0 and if g′ does not vanish on D − {x0} , and if

lim
x→x0

f ′(x)

g′(x)
= a then

lim
x→x0

f(x)

g(x)
= a

Remark 5.3 • L’Hôpital’s Rule is a widely used tool in the evaluation

of limits to resolve indeterminate forms
0

0
where

∞
∞
.

• We can apply L’Hôpital’s Rule as many times as necessary until we
obtain the desired limit

Example 5.4 lim
x→0

sin(x)

x
=

0

0
, we apply L’Hôpital’s Rule

lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
=

1

1
= 1.

Example 5.5 lim
x→+∞

ln(x)

x2
=

+∞
∞

, We apply L’Hôpital’s Rule twice

lim
x→+∞

ln(x)

x2
= lim

x→+∞

1

x
2x

= lim
x→+∞

1

2x2
= 0.
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