
Chapter 2 Sets - Relations - Functions

1 Sets Theory

1.1 Sets and elements

A set is a collection of objects that verify certain properties. An object
which satisfies the needed rules is called element of the set. If the set is
denoted by U and x is an element of U we say x belongs to U and we write
x ∈ U.

Example 1.1 Let us consider the following sets
A = {x ∈ R : −7 < x ≤ 5} = ]−7 5]
B = {x ∈ N : −7 < x ≤ 5} = {0, 1, 2, 3, 4, 5}
C = {x ∈ Z : −7 < x ≤ 5} = {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}

1.2 cardinality of a finite set

If a set U contains a finite number of elements it is said to be finite, otherwise
it is said to be infinite. If U is finite and it contains n ∈ N elements, then n
is called the cardinality of U we write card U = n or |U | = n. If n = 0 the
set U is called an empty set and is denoted by ∅ and we have card∅ = 0.
In the previous example A is infinite set, |B| = 6.

1.3 Inclusion and Equality

Definition 1.1 Let A,B be two sets contained in some universal set U

• The set A is a proper subset of B provided that A ⊆ B and A 6= B.
When EA is a proper subset of B we write A ⊂ B. One reason of the
definition of proper subset is that each set is a subset of itself. That is
A ⊆ B.

• (A ⊂ B)⇔ (∀x ∈ U, x ∈ A⇒ x ∈ B) .

• If A ⊂ B we say that A is a subset of B or B contains A.
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• (A 6⊆ B)⇐⇒ (∃x ∈ U) : (x ∈ A and x /∈ B)

Theorem 1.2 Let A,B,C be subsets of an universal set U.

• (A = B)⇐⇒ [(A ⊆ B) et (B ⊆ A)] .

• [(A ⊂ B) ∧ (B ⊂ C)] =⇒ (A ⊂ C) .

• For any subset X of U we have X ⊆ X and ∅ ⊆ X.

Example 1.2 A =

]
1

5

2

]
, B = [−5 3[ .

A ⊂ B. In fact,

x ∈ A ⇒ 1 < x ≤ 5

2
,

⇒ −5 ≤ 1 < x ≤ 5

2
< 3

⇒ x ∈ B.

Example 1.3 A = {n ∈ Z, ∃k ∈ Z : n = 5k + 2} , B = {n ∈ Z, ∃k ∈ Z : n = 5k + 7} .
Prove that A = B

n ∈ A ⇒ ∃k ∈ Z, n = 5k + 2,

⇒ ∃k ∈ Z, n = 5k + 2 + 5− 5,

⇒ ∃k ∈ Z, n = 5 (k − 1) + 7,

⇒ ∃k ∈ Z, n = 5k′ + 7 avec k′ = k − 1 ∈ Z,
⇒ A ⊂ B.

n ∈ B ⇒ ∃k ∈ Z, n = 5k + 7,

⇒ ∃k ∈ Z, n = 5k + 7 + 2− 2,

⇒ ∃k ∈ Z, n = 5 (k + 1) + 2,

⇒ ∃k ∈ Z, n = 5k′ + 2 avec k′ = k + 1 ∈ Z,
⇒ B ⊂ A.

A ⊂ B and B ⊂ A then A = B.

2



1.4 The Power Set of a Set

Let A be a subset of an universal set U, then the set whose elements are
all the subsets of A is called the power set of A and is denoted by P(A).
Symbolically, we write

P(A) = {X ⊆ U/X ⊆ A} .

That is X ∈ P(A)⇐⇒ X ⊆ A.

Example 1.4 A =
{
a, b, c

}
,

P(A) =
{
∅, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}

}
.

Remark 1.1 A ∈ P(A), and ∅ ∈ P(A).

Remark 1.2 P(∅) = {∅} , and ∅ ∈ {∅} .
Moreover, card ∅ = 0 and card {∅} = 1. That is ∅ 6= {∅} .
P({∅}) = {∅, {∅}} ,

1.5 Operations on sets

Let A,B be subsets of an universal set U, then
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• A\B is also called the set difference of A and B, or relative comple-
ment of B with respect to A, written A − B and read A minus B or
the complement of B with respect to A.

• The complement of the set A in U denoted by Ac, or A, is the set of
all elements of U that are not in A. That is Ac = {x ∈ U x /∈ A} .
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• The symmetric difference of two sets A,B denoted by A∆B, also
known as the disjunctive union and set sum, is the set of elements
which are in either of the sets, but not in their intersection(the set
which contains the elements which are either in set A or in set B but
not in both is).

A∆B = (A ∪B)− (A ∩B) ,

= (A−B) ∪ (B −A) .

Example 1.5 U = {−1,−5,−3, 0, 2, 7, 11} , A = {−1, 0, 7} , B = {−3, 0,−1, 2, 11}
Ac = {−5,−3, 2, 11} .
A − B = {7} , B − A = {−3, 2, 11} , A∆B = (A−B) ∪ (B −A) =
{7,−3, 2, 11}

Example 1.6 Let us consider the two sets A and B,
A = {0, 1, 3, 5, 8, 10, 17, 20} ,
B = {2, 1, 4, 5, 8, 18, 17, 21} ,
We have :
A−B = {0, 3, 10, 20} ,
B −A = {2, 4, 18, 21}
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A ∪B = {0, 1, 3, 5, 8, 10, 17, 20, 2, 4, 18, 21} ,
A ∩B = {1, 5, 8, 17} ,
(A ∪B)− (A ∩B) = {0, 3, 10, 20, 2, 4, 18, 21} ,
(A−B) ∪ (B −A) = {0, 3, 10, 20, 2, 4, 18, 21} ,
A∆B = {0, 3, 10, 20, 2, 4, 18, 21} = (A ∪B)− (A ∩B) = (A−B)∪ (B −A) .

Theorem 1.3 Let A be a set, then A\A = ∅.

Theorem 1.4 Let A,B be a subsets of an universal set U.

If A ⊂ B then Bc ⊂ Ac.

1.6 Laws of the algebra of sets

Let A,B be subsets of an universal set U.

Example 1.7 Through the following example check Laws of the algebra of
sets.
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A = {x ∈ N | x ≤ 7}
B = {x ∈ N | x is a multiple of 3}
C = {x ∈ N | x ≥ 10} .

Solution 1.5 A = {0, 1, 2, 3, 4, 5, 6, 7} ,
B = {0, 3, 6, 9, 12, . . . } ,
C = {10, 11, 12, 13, 14, 15, 16, 17, . . . } ,

A ∩B = {x ∈ N |x ∈ A et x ∈ B} .
A ∩B = {x ∈ N |x ≤ 7 and x is a multiple of 3} .
A ∩B = {0, 3, 6} .

A ∪B = {x ∈ N |x ∈ A ou x ∈ B} ,
A ∪B = {x ∈ N |x ≤ 7 or x is a multiple of 3} ,
A ∪B = {0, 1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 18, 21, . . . } .

Ac = {x ∈ N | x /∈ A} ,
Ac = {x ∈ N | x > 7} ,
Ac = {8, 9, 10, 11, 12, 13, . . . } ,

Bc = {x ∈ N | x /∈ B} ,
Bc = {x ∈ N | x 6= 3k, k ∈ N} ,
Bc = {x = 3k + 1 or x = 3k + 2 k ∈ N} ,
Bc = {1, 2, 4, 5, 7, 8, 10, 11, 13, . . . } ,

Ac ∩Bc = {x ∈ N | x ∈ Ac and x ∈ Bc} ,
Ac ∩Bc = {x ∈ N | x /∈ A and x /∈ B} ,
Ac ∩Bc = {x ∈ N | x > 7 and x 6= 3k, k ∈ N} ,
Ac ∩Bc = {x ∈ N | x > 7 and x 6= 3k, k ∈ N} ,
Ac ∩Bc = {8, 10, 11, 13, 14, 16, . . . } ,

(A ∪B)c =
{
x ∈ N / x ≤ 7 or x is a multiple of 3

}
,

(A ∪B)c = {x ∈ N / x /∈ (A ∪B)} ,
(A ∪B)c = {x ∈ N / x /∈ A and x /∈ B}
(A ∪B)c = {x ∈ N / x ∈ Ac and x ∈ Bc} = Ac ∩Bc,

Ac ∪Bc = {x ∈ N | x ∈ Ac or x ∈ Bc} ,
Ac ∪Bc = {x ∈ N | x /∈ A or x /∈ B} ,
Ac ∪Bc = {x ∈ N | x /∈ (A ∩B)} ,
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Ac ∪Bc = (A ∩B)c .

Exercise 1.6 Let A and B be two subset of a set U.
Prove that A∆B = (A ∪B) ∩ (Ac ∪Bc) .

Solution 1.7

x ∈ A∆B ⇔ x ∈ (A ∪B)− (A ∩B) ,

⇔ x ∈ (A ∪B) et x /∈ (A ∩B) ,

⇔ x ∈ (A ∪B) et x ∈ (A ∩B),

⇔ x ∈ (A ∪B) et x ∈ (A ∩B)c ,

⇔ x ∈ (A ∪B) et x ∈ (Ac ∪Bc) ,

⇔ x ∈ (A ∪B) ∩ (Ac ∪Bc) ,

Then, A∆B = (A ∪B) ∩ (Ac ∪Bc) ,

1.7 Cartesian Products

Definition 1.8 The Cartesian product of two sets A and B denoted by
A × B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B, and
we write

A×B = {(a, b) | a ∈ A, b ∈ B} .

Remark 1.3 If a 6= b then (a, b) 6= (b, a) and so A×B 6= B ×A.

Example 1.8 One can see the following examples of Cartesian products.

• R2 = R× R = {(x, y) | x ∈ R, y ∈ R} .

• [0 1[× R = {(x, y) | 0 ≤ x < 1, y ∈ R} .

• {0, 1} × [1 2] = {(0, y) , (1, y) , 1 ≤ y ≤ 2} .

• {3, 5, 8} × {0, 9} =
{

(3, 9) , (5, 0) (3, 0) , (5, 9) , (8, 0) , (8, 9)
}
.
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1.7.1 Cartesian Products of Sets Properties

Let A,B and C be three sets. Some of the important properties of Cartesian
products of sets are given below.

• Let (a, b) and (c, d) two elements of A × B. We say that (a, b) =
(c, d) if only if a = c and b = d.

• card (A×B) = |A×B| = |A||B| = cardA.cardB.

• If A and B are non-empty sets and either A or B are infinite set, then
A×B is also an infinite set.

• A2 = A×A = {(a1, a2) /a1, a2 ∈ A} .

•

An = A×A×A× ...×A︸ ︷︷ ︸
n times

=
{(
a1, a2, a3, ..., an

)
/a1, a2, a3, ..., an ∈ A

}
.

n ∈ N,
(
a1, a2, a3, ..., an

)
is called an ordered n−uplet

• If the sets are disjoint in pairs, then A× (B × C) 6= (A×B)× C.

• ∅ ×A = ∅ = A× ∅.

• If A or B are empty sets, then A×B = ∅.

• IfA×B = ∅ this means that either (A = ∅ and B 6= ∅) or (B = ∅ and A 6= ∅)
or (A = ∅ and B = ∅) .

• A× (B ∩ C) = (A×B) ∩ (A× C) .
A× (B ∪ C) = (A×B) ∪ (A× C) .
(A ∩B)× C = (A× C) ∩ (B × C) .
(A ∪B)× C = (A× C) ∪ (B × C) .

2 Relations

Definition 2.1 Let A and B be sets. A relation R from the set A to
the set B is a subset of A× B. That is, R is a collection of ordered pairs
where the first coordinate of each pair is an element of A and the second
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coordinate of each pair is an element of B. The set of pairs (x, y) ∈ A× B
which satisfy R (x, y) is called the graph of the relation R, it is denoted
by GR, such that

GR =
{

(x, y) ∈ A×B | xRy
}
.

A relation from the set A to the set A is called a relation on the set A.
So a relation on a set A is a subset of A×A

Example 2.1 A = {0, 1, 3, 5, 8, 10, 16} , B = {4, 16, 20, 23} .
provied the graph of the relation R defined on A×B by:

∀(x, y) ∈ A×B, xRy ⇔ y = 2x.

GR =
{

(8, 16) , (10, 20)
}
.

2.1 Equivalence Relations-Order relations

Let A be a set and R be a relation on A. The relation R may have various
properties. There are three in particular that we are intrested in

• We say the relation R is reflexive if for all a ∈ A, aRa.

• We say the relation R is symetric if for all a, b ∈ A, aRb =⇒ bRa.

• We say the relationR is antisymetric if for all a, b ∈ A, [(aRb) ∧ (bRa)] =⇒
(a = b) .

• We say the relationR is transitive if for all a, b, c ∈ A, [(aRb) ∧ (bRc)] =⇒
(aRc) .

Definition 2.2 An equivalence relation is a relation that is reflexive, sym-
metric and transitive.

Example 2.2 Let us consider the relation R defined on R by :

∀x, y ∈ R, xRy ⇔ xey = yex.

Prove that R is an equivalence relation.

Solution 2.3 We show that R is reflexive, symmetric and transitive.
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1. ∀x ∈ R on a xex = xex. In other words, we have xRx and then R is
reflexive.

2. R is symetric . In fact, let x, y ∈ R, such that xRx, hence we have

xRy ⇒ xey = yex,

⇒ yex = xey,

⇒ yRx,

3. R is transitive because for all x, y, z ∈ R, such that
[

(xRy)∧(yRz)
]
,

on a
xRy ⇒ xey = yex...............(1)
yRz ⇒ yez = zey.................(2)

(2) gives y =
zey

ez
, moreover, using (1) and by substituting y we have

xey =
zey

ez
ex hence xeyez = zeyex. Since ey 6= 0 Thus

xez = zex,

which implies xRz.

4. R is reflexive, symetric and transitive then it is an equivalence relation.

Definition 2.4 Let R be an equivalence relation on a set A.

1. The equivalence class of an element a in A is the set of all elements x
in A that are in relation with a. We denote this set by a or ȧ, and we
write it as follow

a = ȧ =
{
x ∈ A/ xRa

}
2. a is a representative of the equivalence class ȧ.

3. The set of equivalence classes for all elements in A is called the ”quo-
tient set” of A for the equivalence relation R. It is denoted as A/R,
and written as follows:

A/R =
{
ẋ, x ∈ A

}
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Exercise 2.5 Let use consider the relation R defined on R by

∀x, y ∈ R, xRy ⇔
(
x2 − y2 = x− y

)
Prove that Ris an equivalence relation on R.
Determine the equivalence classe of an elément a in R.

solution

1. R is reflexive because: ∀x ∈ R, x2 − x2 = 0 = x− x, that is xRx.

2. Ris symetric. In fact , let x, y ∈ R such that xRy, hence

xRy ⇒ x2 − y2 = x− y,
⇒ y2 − x2 = y − x,
⇒ yRx.

3. Ris transitive. In fact , let x, y, z,∈ R, such that
(

(xRy) ∧ (yRz)
)
.

xRy ⇒ x2 − y2 = x− y.................(1)
yRz ⇒ y2 − z2 = y − z...............(2)
The sum of (1) and (2) gives x2 − z2 = x− z, which implies xRz.

4. R is reflexive, symetric and transitive then it is an equivalence relation.

5. let a ∈ R.

ȧ =
{
x ∈ R, | xRa

}
,

=
{
x ∈ R | x2 − a2 = x− a

}
,

=
{
x ∈ R | (x− a) (x+ a)− (x− a) = 0

}
,

=
{
x ∈ R | (x− a) (x+ a− 1) = 0

}
,

=
{
x ∈ R | x = a or x = 1− a

}
,

=
{
a, 1− a

}
.
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Remark 2.1 We distinguish two cases

If a =
1

2
we have: ȧ =

{1

2

}
,

If a 6= 1

2
on we have: ȧ =

{
a, 1− a

}
.

Definition 2.6 An order relation (also called an order or ordering) is a
binary relation that is reflexive, antisymmetric and transitive.

Definition 2.7 (Totality of an order) Let R be an order relation on A. If
for all a, b in A we have (aRb) or (aRb) or both, then the order is called
total (total property). We say A is totaly ordered by R. The total property
implies the reflexive property, by setting a = b. If the order is not total it is
partial.
Let R be an order relation on A. Two elements a, b in A are comparable if
only if we have (

(
aRb ∨ bRa

)
. If R is an order relation on A, and if the

order is total, then all elements of A are comparable.

Example 2.3 Let A be a non-empty set and R a relation on A defined by :

∀a, b ∈ A, aRb⇔ a = b.

R is a an order relation on A.
if A is a singleton, then the order is total. If not, the order is partial.

3 Functions - Mappings

Now, we are interested in relations that map the elements of two sets: the
set of departure and the set of arrival. A function is a rule which operates
on one element to give another element. However, not every rule describes a
valid function. The following definitions explain how to see whether a given
rule describes a valid function, and introduces some of the mathematical
terms associated with functions.

3.1 Generalities

Definition 3.1 A function is a rule that maps an element to another unique
element. The input to the function is called the independent variable, and
is also called the argument of the function. The output of the function is
called the dependent variable.
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Definition 3.2 We call a function from a set E to a set F any relation from
E to F that associates, or maps, every element x ∈ E to at most one in
y ∈ F such that xRy. Generally, functions are denoted by f, g, h,K, T, . . . ,
and we write:
f : E −→ F

x 7−→ y = f(x)

• y is the image of x by the function f,

• x is the pre-image or preimage of y,

• E is the set of departure of f , and F is the set of arrival.

Definition 3.3 A function from a set E to a set F that associates with
each element x of the set E exactly one element of the set F is called
a mapping from E to F.

Definition 3.4 Let f : E −→ F. A domain or set of definition of f is the
set of all elements x ∈ E such that ∃ y ∈ F which satisfies y = f(x), is the
set denoted Df and is writen as

Df =
{
x ∈ E : ∃y ∈ F | y = f(x)

}
Remark 3.1 A mapping f defined from E to F is a function where Df = E.

Example 3.1 Determine the domain of definition of the following function:

f : R −→ R
x 7−→ f(x) =

√
x− 1

Df =
{
x ∈ R, | x− 1 ≥ 0

}
Df =

{
x ∈ R, | x ≥ 1

}
Df =

[
1 +∞

[
Definition 3.5 1. The graph of a function f : E −→ F is the set of all

ordered pairs (x, y) ∈ E × F where y = f(x) and we write

Gf =
{

(x, y) ∈ E × F / y = f(x)
}
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2. The curve representing the function f in a coordinate system
(
O,~i,~j

)
;

which is generally denoted as (Cf ) ; is the set of all points M (x, y) with
ordered pairs (x, y) ∈ Gf .

Example 3.2 The curve representing the function x 7−→ x2.

Example 3.3 La fonction

f : R −→ R

x 7−→ f(x) =
1

x
This is a function because 0 has not an image by f, While

f : R∗ −→ R

x 7−→ f(x) =
1

x

is a mapping and Df = R∗ the departure set departure of f.

Definition 3.6 Let E be a set, the mapping
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IdE : E −→ E
x 7−→ IdE(x) = x,

It is called an identity function.

3.2 Composed of two functions

Let f : E −→ F and g : F −→ G two mapping. We call the composite of
f and g the map denoted gof and defined as follows:

gof : E −→ F
x 7−→ (gof) (x) = g [f(x)]

Example 3.4 Does (gof) = (fog)?
In general the answer is no. We give the following example:
f : R −→ R

x 7−→ f(x) = 5x− 1

g : R −→ R
x 7−→ g(x) = x2

Let x ∈ R

(gof) (x) = g [f(x)]

= (f(x))2

= (5x− 1)2

(fog) (x) = f [g(x)]
= 5g(x)− 1
= 5x2 − 1

∀x ∈ R, (gof) (x) 6= (fog) (x), hence gof 6= fog.

3.3 Injection - Surjection - Bijection

Let E,F non-empty sets and f : E → F a function

Definition 3.7 f is injective or an injection if only if for all x, x′ ∈ E :
si f(x) = f(x′) then, x = x′, and we write

f injective ⇔
[
∀x, x′ ∈ E :

( (
f(x) = f(x′)

)
=⇒

(
x = x′

) )]
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This definition means that when f is an injective function, it is impossible
to find two distinct pre-images that have the same image. In other words,
for all y ∈ F, the equation y = f(x) has at most one solution x ∈ E.

Example 3.5 It is very easy to see that the function
f : R −→ R

x 7−→ f(x) = x2

is not injective. We can take as counterexample the case when x = −1 and
x′ = 1, we have f(−1) = 1 = f(1), whereas 1 6= −1.

Definition 3.8 We say that f is surjective or a surjection if and only
if, for every y ∈ F, the equation y = f(x) has at least one solution x ∈ E,
and we write:

f is surjective ⇔
[
∀y ∈ F,∃x ∈ E / y = f(x)

]
This definition shows that when f is a surjective function, we never find an
element in F that does not have a pre-image in E.

Example 3.6 We can immediately see that

f : R −→ R
x 7−→ f(x) = x2

is not surjective because the equation y = x2 has no solution when y < 0. In
other words, if y < 0, then y has no pre-image x.

Definition 3.9 The function f is bijective or a bijection if and only if it
is both injective and surjective. In other words, f is bijective si est seulemnt
if for all y ∈ F, the equation y = f(x) has a unique solution x ∈ E, and we
write

f bijective ⇔
[
∀y ∈ F,∃! x ∈ E / y = f(x)

]
Proposition 3.10 Let E,F be two non empty sets. If the function f :
E → F is bijective then f admits a has an inverse function denoted by f−1

which is also bijective and defined as follow:

f−1 : F −→ E
y 7−→ x = f−1(y).
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Example 3.7 The function f defined by

f : R −→ R+

x 7−→ f(x) = ex.

is bijective, then it admits an inverse function f−1 given by

f−1 : R+ −→ R
y 7−→ x = f−1(y) = ln(y),

and we write

f−1 : R+ −→ R
x 7−→ f−1(x) = ln(x),

Remark 3.2 If f : E → F is bijective, then fof−1 = IF and f−1of = IE .

Exercise 3.11 Let us consider the function f defined by
f :

[
1 +∞

[
−→

[
0 +∞

[
x 7−→ f(x) = x2 − 1,

f is it bijective? If your answer is positive, then give f−1.

Solution 3.12 1. We check if f is bijective.

(a) injectivity:
Let x, x′ ∈

[
1 +∞

[
such that f(x) = f(x′) a-t-on x = x′?

f(x) = f(x′) ⇒ x2 − 1 = x′2 − 1,

⇒ x2 − x′2 = 0,

⇒
(
x− x′

) (
x+ x′

)
= 0,

⇒
(
x− x′

)
= 0 because x+ x′ > 0,

⇒ x = x′, then f is injective.

(b) surjectivity:
Let y ∈

[
0 +∞

[
, Does it exist x ∈

[
1 +∞

[
such that y = f(x)?

y = f(x) ⇒ y = x2 − 1,

⇒ x2 = y + 1, avec y + 1 > 0

⇒ |x| =
√
y + 1,

(
|x| = x because x > 0

)
,

⇒ x =
√
y + 1 ∈

[
1 +∞

[
, then f is surjective.
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(c) Since f is injective and surjective, then it is bijective.

2. Since f is bijective then it admits an inverse fonction f−1defined as
follow

f−1 :
[
0 +∞

[
−→

[
1 +∞

[
y 7−→ f−1(y) = x =

√
y + 1,

we write:

f−1 :
[
0 +∞

[
−→

[
1 +∞

[
x 7−→ f−1(x) =

√
x+ 1,

3.4 Direct image - Inverse image of a set

Definition 3.13 Let E,F,A,B be sets such that A ⊂ E et B ⊂ F, and f a
function from E to F.

• The direct image of A by f, is the set denoted by f(A) and defined by

f(A) =
{
f(x), x ∈ A

}
,

or
f(A) =

{
y ∈ F | y = f(x) ∧ x ∈ A

}
.

• The Inverse image of B, under the function f is the set denoted by
f−1(B) and defined as follow

f−1(B) =
{
x ∈ E, f(x) ∈ B

}
,

or
f−1(B) =

{
x ∈ E | y = f(x) ∧ y ∈ B

}
.

Remark 3.3 It is important to note here that f−1(B) is just a notation,
and f−1 does not represent the inverse function of f We do not require
f to be bijective to determine f−1(B), It is emphasized that f is merely a
function.
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3.5 Properties

Let us consider the function f : E → F.
The following properties are very useful in exercises, especially when trying
to find the direct or inverse image of a set expressed as intersections or
unions of two or more sets.
Let A,B ⊂ E, and A′, B′ ⊂ F

• f(A), f(B) ⊂ F ; f−1(A′), f−1(B′) ⊂ E.

• f(∅) = ∅; f−1(∅) = ∅.

• Si A ⊂ B alors f(A) ⊂ f(B).

• Si A′ ⊂ B′ alors f−1(A′) ⊂ f−1(B′).

• f (A ∪B) = f (A) ∪ f (B) ; f−1 (A′ ∪B′) = f−1 (A′) ∪ f−1 (B′) .

• f (A ∩B) ⊂ f (A) ∩ f (B) ; f−1 (A′ ∩B′) = f−1 (A′) ∩ f−1 (B′) .

Example 3.8 Let us consider the function f

f : R −→ R
x 7−→ f(x) = x2 + 1,

A =
{

0, 3, 6, 8
}
, B =

{
0
}
.

f(A) =
{
f(x), x ∈ A

}
=
{
f(0), f(3), f(6), f(8)

}
=
{

0, 10, 37, 65
}
.

f−1(B) =
{
x ∈ R, | y = x2 + 1 et y ∈ B

}
.

Since B contains only one element, which is 0, we solve the equation y =
x2 + 1 with y = 0. However, the equation x2 + 1 = 0 has no solutions in R,
then f−1(B) = ∅.

3.6 Characteristic function

Definition 3.14 Let E be a set, and let A ⊂ E. We define the character-
istic or the indicator of A as

χA : A −→ {0, 1}

x 7−→ χA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Exercise 3.15 Let us consider the function
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f : R −→ R
x 7−→ f(x) =

√
x2 + 2.

1) Provide the direct images by f of the sets A1 =
{

0, 2
}
, A2 =

[0 2] , A3 =
[
− 1 1

]
.

2) Provide the inverse images of the sets B1 =
{

0, 2, 1
2 ,
√

2
}
, B2 =

[
1 3
]
, B3 ={

− 4
}
.

Solution 3.16 • f(A1) =
{
f(x), x ∈ A1

}
=
{
f(0), f(2)

}
=
{√

2,
√

6
}

• f(A2) =
{
f(x), x ∈ A2

}
As f is continuous and a no-decreasing function on R+, then for x ∈ A2,
i.e., 0 ≤ x ≤ 2, we have f(0) ≤ f(x) ≤ f(2). Hence f(A2) =

[√
2
√

6
]
.

• f(A3) =
{
f(x), x ∈ A3

}
=
{
f(x), x ∈ [−1 1]

}
.

There are two distinct cases: x ∈ [−1 0] and x ∈ [0 1] .
Since f is continuous and decreasing function on R−,for −1 ≤ x ≤ 0, we
have f(0) ≤ f(x) ≤ f(−1), i.e., f([−1 0]) =

[√
2
√

3
]
.

f is continuous and a no-decreasing function on R+, then for x ∈ [0 1] ,
i.e., 0 ≤ x ≤ 1, we have f(0) ≤ f(x) ≤ f(1). Hence, f([0 1]) =

[√
2
√

3
]
.

In conclusion, f(A3) =
[√

2
√

3
]
.

• f−1(B1) =
{
x ∈ R, f(x) ∈ B1

}
=
{
x ∈ R, f(x) ∈

{
0, 2, 1

2 ,
√

2
}}

.

f(x) ∈
{

0, 2, 1
2 ,
√

2
}
⇒
(

(f(x) = 0)∨(f(x) = 2)∨
(
f(x) =

1

2

)
∨
(
f(x) =

√
2
) )

.

f(x) = 0 ⇒
√
x2 + 2 = 0,

⇒ x2 + 2 = 0,
⇒ x2 = −2,

The equation f(x) = 0 has no solutions R.

f(x) = 0 ⇒
√
x2 + 2 = 2,

⇒ x2 + 2 = 4,
⇒ x2 = 2,

⇒
(
x =
√

2
)
∨
(
x = −

√
2
)
.

f(x) = 0 ⇒
√
x2 + 2 = 1

2 ,
⇒ x2 + 2 = 1

4 ,
⇒ x2 = −7

4 ,

The equation f(x) =
1

2
has no solutions in R.
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f(x) = 0 ⇒
√
x2 + 2 =

√
2,

⇒ x2 + 2 = 2,
⇒ x2 = 0,
⇒ x = 0.

In conclusion, f−1(B1) =
{√

2, −
√

2, 0
}

• f−1(B2) =
{
x ∈ R, f(x) ∈ B2

}
=
{
x ∈ R, f(x) ∈

[
1 3
]}
.

f(x) ∈
[
0 3
]
⇒

√
x2 + 2 ∈

[
1 3
]
,

⇒ 1 ≤
√
x2 + 2 ≤ 3,

⇒ 1 ≤ x2 + 2 ≤ 9,
⇒ −1 ≤ x2 ≤ 7,

We consider two cases: −1 ≤ x2 ≤ 0 and 0 ≤ x2 ≤ 7.

In the case: −1 ≤ x2 ≤ 0 we have not solutions.

In the case: 0 ≤ x2 ≤ 7 we have

0 ≤ x2 ≤ 7 ⇒ 0 ≤ |x| ≤
√

7,

⇒
(

0 ≤ x ≤
√

7
)
∨
(

0 ≤ −x ≤
√

7
)
,

⇒
(

0 ≤ x ≤
√

7
)
∨
(
−
√

7 ≤ x ≤ 0
)
,

⇒
(
x ∈

[
0
√

7
])
∨
(
x ∈

[
−
√

7 0
])
,

⇒ x ∈
[
0
√

7
]
∪
[
−
√

7 0
]
,

f−1(B2) =
[
0
√

7
]
∪
[
−
√

7 0
]
.

• f−1(B3) =
{
x ∈ R, f(x) ∈ B3

}
=
{
x ∈ R, f(x) ∈

{
− 4
}}
.

f(x) ∈
{
− 4
}
⇒ f(x) = −4,

⇒
√
x2 + 2 = −4,

l’équation f(x) = 0 has no solutions in R, then f−1(B3) = ∅.

———————————————————
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