Chapterl:Logic and Methods of proofs

1 Introduction

Calculating and proving are the two main activities of mathematics. When
we are interested in the activity of demonstrating, logic explains how a fact
or an affirmation can flow from other facts already admitted. In mathe-
matics, logic is the practice of rigor and exactness in thought. Therefore
one can never do sound mathematical reasoning if one does not master the
fundamental notions of mathematical logic. In this chapter, we present the
elements of logic essential for any mathematical reasoning by direct or indi-
rect methods.

2 Element of logic

Logic is interested in the rules of construction of mathematical sentences
and on the other hand in their truth.Statements are atoms in mathematical
logic.

2.1 Statements

Definition 2.1 A statement is a sentence which is either true or false, but
not both simultaneously

o when the statement is true we assign the value 1 or T.
o when the statement is false, it is assigned the value 0 or F.

Truth and falisity of a statement is called its truth value. These truth val-
ues are organized in a table called a “truth table.” This table shows all the
possible combinations of truth values for different statements that make up
a logical expression and indicates the resulting truth value of the expres-
sion. In mathematical logic, propositions are often denoted by letters such
as P,Q, ...,



Example 2.1 1. The sentence

Ain Defla is in Algeria ; is true. So it is a statement.

2. The sentence

“Fvery rectangle is a square” is false. So it is a statement.

3. The sentence “open the door” can not be assigned true or false (Infact,
it is a command). So it can not be called a statement.

4. The sentence “How old are you?” can not be assigned true or false (In
fact, it is a question). So it is not a statement.

5. The truth or falsity of the sentence “r is a natural number” depends
on the value of x. So it is not considered as a statement. However, in
some books it is called an open statement.

Remark 2.1 No sentence can be called a statement if

e [t is an exclamation

It is an order or request

It is a question

It involves variable time such as ‘today’, ‘tomorrow’, ‘yesterday’ etc.

It involves variable places such as ‘here’, ‘there’, ‘everywhere’ etc.

It involves pronouns such as ‘she’, ‘he’, ‘they’ etc.

Definition 2.2 Simple statements
A statement is called simple if it can not be broken down into two or more
statements

Definition 2.3 Compound statements
A compound statement is the one which is made up of two or more simple
statements.



2.2 Basic logical connectives

With the help of two ( or several) statements one can define new propositions
using logical connectives. We give the rules for these five connectors ’not,’
‘and’, ’or’, if...then’, "if and only if’.

Definition 2.4 (Negation: ‘No’,’Note’ )

An assertion that a statement fails or denial of a statement is called the
negation of the statement. The negation of a statement is generally formed
by introducing the word “not” at some proper place in the statement or by
prefixing the statement with “It is not the case that” or It is false that” Let
P be a statement. The negation of P is the statement denoted as P, which
is true if P is false, and vice versa.

Example 2.2 The negation of P : “Khemis Miliana is a a city ” is
P : “ Miliana is not a city > or P : “ It is false that Khemis Miliana is
a a city. ”

Definition 2.5 (Conjunction: ‘And’)

If two simple statements P and Q are connected by the word ‘and’, then the
resulting compound statement (P and Q) is called a conjunction of P and Q
and is written in symbolic form as (P A Q). This new statement can be true
only if both P and @ are true at the same time.

Example 2.3 “3 is a prime number and odd.” And this statement is true.
The number 3 is a prime number because it has no divisors other than 1 and
itself. Additionally, it is odd because it is not divisible by 2.

Definition 2.6 (Disjunction: ‘Or’)

Let P and Q be two statements. The disjunction of P and Q) is the proposi-
tion (P V Q), which can only be false if both P and Q are false at the same
time.

Definition 2.7 (The conditional statement)

Recall that if P and Q are any two statements, then the compound statement
“if p then q”7 formed by joining P and QQ by a connective ‘if then’ is called a
conditional statement or an implication and is written in symbolic form as
P — @ or P= Q. Here, P is called hypothesis (or antecedent) and @Q is
called conclusion (or consequent) of the conditional statement (P = Q).

Remark 2.2 The conditional statement (P = Q) can be expressed in sev-
eral different ways. Some of the common expressions are :



if P, then Q

Qif P

P only if Q

o P is sufficient for Q

e Q) is necessary for P. Observe that the conditional statement (P = Q)
reflects the idea that whenever it is known that P is true, it will have
to follow that @ is also true.

Definition 2.8 (The biconditional statement)

If two statements P and @ are connected by the connective ‘if and only
if ’ then the resulting compound statement “ P if and only if Q” is called a
biconditional of p and q and is written in symbolic form as (P < Q). We
say that P and Q are equivalent when P and ) have the same truth values.

Remark 2.3 By using truth tables, we can show that:
e P& P
e (Pe@)=[(P=Q) A (Q=P)
* (P=Q)=(PVQ)

e (P=Q)<= (Q=P)

Definition 2.9 (Contrapositive of a conditional statement)
The statement (Q = P) is called the contrapositive of the statement (P =

Q)

Definition 2.10 (Converse of a conditional statement)
The conditional statement QQ = P is called the converse of the conditional
statement (P = Q)

Remark 2.4 Attention! It is necessary to distinguish between the negation
of an implication and the inverse of an implication. The converse of (P =

Q) is (Q = P), but the negation of (P = Q) is (P = Q).

Exercise 2.11 Find the statement which is equivalent to (P = Q).



2.3 Morgan’s Rules

Proposition 2.12 ( Morgan’s Rules )

The Rules of Morgan are fundamental laws of logic that allow manipulation
of logical operators for negation, conjunction, and disjunction. They are
named after the British mathematician and logician Augustus De Morgan,
who formulated them in the 19th century. Here are the two Rules of Morgan:
Let P and Q be two logical statements, then:

1. Negation of conjunction: The negation of a conjunction is equivalent
to the disjunction of the negations of the individual propositions.

2. Negation of disjunction: The negation of a disjunction is equivalent to
the conjunction of the negations of the individual propositions.

In other words:
L (PrQ) s (PVQ).
2. (PVQ)«= (PNQ).

Proof. By using truth tables we get the required results.

P Q|P|Q|PAQ|PVQ|PAQ
1 (1100 1 0 0
0o|lo[1]1 0 1 1
o|1[1]o0 0 1 1
1lofo]1 0 1 1

In the same way one can do PV Q and PA Q. m
Theorem 2.13 Let P,Q, R be three statements
1. (PNQ)< (QAP) et (PVQ)< (QVP).
2. (PANQ)AR| < [PAN(QAR)] et[(PVQ)VR]<[PV(QVR).
3. (PAQ)VR] < [(PVR)A(QVR)] et ([PVQ)AR] < [(PAR)V(QAR)].

The V and the N are said to be commutative, associative and distributive
with respect to each other. Commutativity means that the order of proposi-
tions does mot matter when performing a disjunction or conjunction between
them. We can swap the propositions without changing the truth value of
the expression. Associativity means that we can group the propositions in
any order, using parentheses, without changing the truth value of the ex-
pression. Distributivity allows us to distribute the conjunction or disjunction
over the propositions that are combined inside parentheses.



Example 2.4 Soit n > 2, We consider the implication (I):

[(n prime and n # 2) = (n is odd)] .

The contrapositive of the proposition (I) is:

[(n is even) = (n =2 or n is not prime)].

The negation of (I) is:
[(n is prime and n # 2) and (n is even)].
s

The converse of (I) is:

[(n is odd) = (n is prime and n # 2)].

2.4 Quantifiers
2.4.1 Predicate

Let E be a set (for example: R,7Z,N) A predicate on E is any statement
that contains one or more variables z, and if we replace = with a fixed ele-
ment from F, we obtain a true or false proposition. A predicate is denoted

by: p(z),q(x),...

Example 2.5 Here are two predicate examples
p(x) : x is a multiple of 7, x € 7.
q(z) : n is a prime number , n € N.

2.4.2 Quantificateur universel

The universal quantifier whose symbol is” << V >> means jj For all ;;, jj
For any .... ;. Let E be a given set, and p(x) be a predicate on E. The
following three statements: (a) for any x in E : p(z),

(b) for every element x in E : p(z),

(¢) for any x in E : p(z),

can be replaced by the notation "Vz € E :;p(z).”

Example 2.6 The sentence "every real number is greater than or equal to
5.7 1s written "Vrx eR:x >5"

Example 2.7 The first proposition is true while the second is false
e VxeN x+4+1>0.
e VxcZ 22+3x-2<0.



2.4.3 Existential quantifier

In mathematical logic, the symbol << 3 >> (read as ”there exists”) repre-
sents the existential quantifier. It is used to state that there exists at least
one element that satisfies a given predicate.

So, the statement: 3x € E : P(x), can be read as "There exists an z in
E such that P(z). This means that there is at least one element z in the set
E for which the predicate P(z) is true.

Example 2.8 The following statement
“there exists at least one real number such that x> —5 > 0.”

In mathematical notation, it is written as:

JreR:2? —5>0.

The symbol ”3” represents the existential quantifier, and it signifies the
existence of at least one element that satisfies the predicate > —5 > 0 in
the set of real numbers R.

It is clear that a quantifier associated with a predicate gives a proposition
which can be true or false.

Exercise 2.14 Write the following sentences using quantifiers.
1. The square of any real number is positive.

2. For all real numbers the square of the sum of two numbers is equal to
the sum of their squares.

3. Fvery integer has an opposite.

4. There is at least one integer which is opposite to all integers.

Solution 2.15 We obtain the following propositions:
1. Ve eR 22>0. (T)
2.V eR, Vy e R (z+y)?=22+9% (F)
3N e€Z, yeZ, v+y=0. (T)

4. yel,Nxel, x+y=0. (F)



2.4.4 Negation of a quantifier
Let E be a non-empty set and p(z) a predicate on E.

The negation of a quantifier involves changing the meaning of the quantified
statement from ”for all” to ”there exists” or vice versa.

In the case of the universal quantifier ”V,” the negation is the existential
quantifier ”34.” Similarly, for the existential quantifier ”34,” the negation is
the universal quantifier ”V.” the negation of a quantified statement is given
as follows:

Negation of the universal quantifier Va:

(VmEE:P(@)@(HwGE:%)

(Elx ekb: P(ac)) : means "There exists an ¢ € E for which the predicate

P(z) is not true.”
Negation of the existential quantifier Jx:

(3x€E:P(1:))<z>(Vx€E:%>

(Vaz ekb: %) : means "For all z € E, the predicate P(x) is not true.”
In simpler terms, negating a universal quantifier changes the statement from
7 All elements have property P” to ” There exists at least one element that
does not have property P.” Negating an existential quantifier changes the
statement from ” At least one element has property P” to ” All elements do
not have property P.”

Example 2.9 The negation of the following two propositions is given as
follows:

e VzeR 22>0 4s Jx R, 22<0.

e VeeZ yeZ, v+y=0 is JxecZ VyecZ, v+y#0.

3 Methods of Proofs

3.1 Direct Methods
Let P, (Q be two given propositions.

e To show that the implication (p = Q) is true, it is sufficient to assume
that P is true and demonstrate that ) is also true.



e To prove that the equivalence (p < Q) is true, it is sufficient to demon-
strate that both implications (P = @) and (Q = P) are true at the
same time.

Example 3.1 Prove that Vz,y € R, (z?=y?) = (|z| =y|).

Solution 3.1 Let z,y be two real numbers, we assume that z> = y> and we
prove that |z| = |y|.

Since x2,y% are positive real numbers then by considering their square roots
we have

2=y = Va2=./y?

= |zl =lyl.

When direct methods of reasoning are not effective, we use other types of
reasoning called indirect methods.

3.2 Indirect Methods
3.2.1 Proof by contradiction

In order to prove that a proposition P is true, we assume that P is true and
from this assumption, we are able to arrive at or deduce a statement that
contradicts some assumption we made in the proof or some known fact. We
deduce that to prove that (P = Q) is true, we assume that P is true and @
is false. Such assumptions will lead to a contradiction.

In fact, (P = Q) < (P A @) . Assuming that (P = Q) is false, this means
that (P = @) is true. Then obviosly (Pf/\ @) is true. From the truth table
of a conjunction we must have P and () true at the same time. In other

words P true and (@) false at the same time.

Example 3.2 Using proof by contradiction, show that for every integer n,
we have: (n2 s even = n 1S even) .

Solution 3.2 we assume that n? is even and n is odd.

n odd = Jdk € Nyn =2k + 1, hence :

n? = (2k+1)? = 4k® +4k+1 = 2(2k?+2k) +1. Since (2k*+2k) is an integer
we set: k' = (2k? +2k) € N. Therefore, n? =2k’ 41, which contradict the
hypothesis n? is even.



Example 3.3 Prove that /2 is not a rational number.
a€Z, be Z*} .

we recall that a rational number is an element of Q = {E

b7

Proof. Proof by contradiction consists in assuming that v/2 € Q. and we

must find a contradiction related to this assumption. V2 € Q = Ja €
2
Z,andb € Z* such that v/2 = % with GCD (a,b) = 1. Then %2 — 2, which

implies that a® = 2b? is even. By example 1 we deduce that a will be even.
So it exists a integer k such that a = 2k and a? = 4k2. On the other hand
4k? = 2b? implies that b? is even. Consequently, b is even. Since 2 divides
a and 2 divides b, then it divides GCD (a, b) . In other words, GCD (a,b) =
2n, n € N*. This is contradiction with hypothesis GCD (a,b) = 1. The
contradiction comes from the assuption v/2 € Q. Then /2 ¢Q. m

3.2.2 Proof by cases

Example 3.4 Prove that the product of two consicutive integers is even

Proof. Let n be an integer. Then n is either even or odd. The product of
two consicutive integers is of the form n (n+1).

e Case 1:If n is even
It exists k € N such that n = 2k. Therefore, n(n+ 1) =2k (2k + 1) =
2k’ with k' = k (2k +1) € N.

e Case 2: If n is odd
It exists k € N such that n = 2k+1. Therefore, n(n+ 1) = (2k + 1) (2k +2) =
2K with ¥ = (2k+1) (k+1) € N.

e Conclusion: The proposition is true for all n € N.

3.2.3 Proof by Contrapositive

It is based on the following property

(P= Q)<= (Q = P)

If the direct method does not help to prove that (P = @), then we prove
that its contrapositive hold. In other we prove that (Q = P) is true.

Example 3.5 Let n be an integer. Prove that if n?> +2n < 0 then n < 0.

10



Proof. P: n?+2n <0, Q:n<0, P:n>+2n>0, Q:n>0. We
use the contrapositive method. We will prove that if n > 0 then n?+2n > 0.
Assume that n > 0 then 2n > 0. Since n? >, the sum of two positive numbers
is positive. That is n? +2n > 0. m

3.2.4 Proof by counterexample

To prove that the proposition (Vax € D,p(x)) is not true, it is enought to
find an element in D such that p(zx) is false for this element.

Example 3.6 The proposition

For all positive integer n, the number n> — n + 41 is prime. is false
Counterexample

For n = 41, we have (41)? — 41 + 41 = (41)? which is not prime.

3.2.5 if only if

We recall that [(p <= q) <= [(p = ¢) A (¢ = p))] . In order to prove that
(p < q) is true, we prove that (p = q) is true and (¢ = p) is also true.

Example 3.7 Letn be an integer. To prove that (n is odd if only if n®> — 1 is even )
we have to prove that (n is odd = n® —1 is even ) 1s true, and (n2 —1liseven = n is odd)
18 true.

3.2.6 Proof by induction

Let n € Ny C N be a positive integer and p(n) a predicate. To prove that
the proposition (Vn € Ny, p(n)) is true, we use a proof by induction.
Inductive process( Steps for proof by induction)

1. The basic step: we have to validate our statement by proving it is true
when n = ng where ng is the first integer in Ny,

2. The hypothesis: this step consists in assuming that the statement is
true for some n > ng and we show that is also true for n + 1,

3. The inductive step: then we conclude that p(n) is true for all n € Ny.

1
Example 3.8 Prove that Vn > 1,54+ 10+ 154+ 20+ ... + 5n = M
) 1
Proof. Let p(n) : 54+ 104+ 15+ 20 + ... + 5n = Sn(n+1) and Ty =
) 1
5+10+ 15+ 20+ ... + 5n andTQZ”(”ZH.
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5 X2

1. Stepl: forn=1,T1 =5T, = = 5. That is p(1) is satisfied.

2. Stem2: We assume that p(n) is true for some n > 1 and we prove that
p(n+ 1) is true. That is we assume that

5 1
5+10+15+2o+...+5n=”<”2+)

and prove that

5(n+1) (n+2
5410+ 15+204 ...+ 5(n+1) = 2t +2)

In fact,
5+10+15+20+...+5(n+1) = 5+10+15+20+...4+5n+ (n+1),
on(n+1
SRSV A}
~_ n(n+1)+10n+10
- 5 ,
_ 5(n+1)(n+2)
= ; ,

we deduce that p(n + 1) is true,

3. Conclusion: from stepl and step2 we deduce that p(n) is true for all
n € N*.

Example 3.9 Prove that Vn € N, 2™ > n.
Proof. n € N. Let P(n) be the predicate 2" > n,

1. For n =0 we have 2° =1 > 0. Then P(0) is true .

2. let n > 0. We assume that P(n) is true and prove that P(n + 1) is
true.
In other words, we assume that 2" > n and prove that 2"t > n + 1.

ontl — 99m
— 2n + 277,’
> n+1since2™ >nand2™ > 1.

Hence, P(n+ 1) is true.
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3. Conclusion: from stepl and step2 we deduce that p(n) is true for all
n € N.
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