Chapter 6

Fourier Transform

6.1 Definition and Properties of the Fourier Transform

6.1.1 Definitions

Definition 6.1 For a continuous signal x(t) defined for all $t \in \mathbb{R}$ and absolutely integrable, the Fourier transform is defined as:

$$X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft} dt, \quad j^2 = -1$$

where:

- X(f) is the Fourier transform of x(t)
- f is the frequency in Hz
- j is the imaginary unit $(j^2 = -1)$

The Fourier transform represents a time-domain signal as a superposition of sinusoidal components at different frequencies.

Examples 6.1 Example 1: Causal exponential

Consider the signal $x(t) = e^{-2t}u(t)$, where u(t) is the unit step function defined by:

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

and its derivative, is the Dirac delta function:

$$\frac{d}{dt}u(t) = \delta(t)$$

Then the Fourier transform is:

$$X(f) = \int_0^\infty e^{-2t} e^{-j2\pi ft} dt = \int_0^\infty e^{-(2+j2\pi f)t} dt = \frac{1}{2+j2\pi f}.$$

Remark 6.1 The unit step function makes the signal causal, i.e., zero for t < 0.

Example 2: Dirac delta function

Consider $x(t) = \delta(t)$, the Dirac delta function, defined by:

$$\delta(t) = \begin{cases} 0, & t \neq 0 \\ \text{infinity}, & t = 0 \end{cases}, \quad \text{with } \int_{-\infty}^{\infty} \delta(t) dt = 1$$

Theorem 6.1 (Sifting Property of the Dirac Delta) Let $\delta(t)$ be the Dirac delta function, and let $\phi(t)$ be any continuous function. Then:

$$\int_{-\infty}^{+\infty} \delta(t) \, \phi(t) \, dt = \phi(0)$$

More generally, for a shifted delta function $\delta(t-t_0)$:

$$\int_{-\infty}^{+\infty} \delta(t - t_0) \, \phi(t) \, dt = \phi(t_0)$$

Remark 6.2 This property means that the delta "samples" the value of the function at the point $t = t_0$.

The Fourier transform is:

$$\mathcal{F}\{\delta(t)\} = X(f) = \int_{-\infty}^{\infty} \delta(t)e^{-j2\pi ft} dt = 1$$

Remark 6.3 The Dirac delta contains all frequencies with equal amplitude.

Example 3: Pure cosine

Consider $x(t) = \cos(3t)$. Using Euler's formula:

$$\cos(3t) = \frac{e^{j3t} + e^{-j3t}}{2}$$

Then the Fourier transform is:

$$X(f) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-j(2\pi f - 3)t} dt + \frac{1}{2} \int_{-\infty}^{\infty} e^{-j(2\pi f + 3)t} dt = \frac{1}{2} \delta(2\pi f - 3) + \frac{1}{2} \delta(2\pi f + 3)$$

Remark 6.4 A pure cosine has two frequency components at $\pm 3/(2\pi)$ Hz.

6.1.2 Properties of the Fourier Transform

1. Linearity

Theorem 6.2 (Linearity) For signals x(t) and y(t), and constants $a, b \in \mathbb{C}$:

$$\mathcal{F}\{ax(t) + by(t)\} = aX(f) + bY(f).$$

Where X(f) and Y(f) are respectively the Fourier transform of x(t) and y(t).

Example 6.1 Compute the Fourier transform of $x(t) = 2e^{-t}u(t)$ and $y(t) = \cos(3t)$ combined as x(t) + y(t).

$$\mathcal{F}\{x(t)\} = \frac{2}{1+j2\pi f}, \quad \mathcal{F}\{y(t)\} = \frac{1}{2}\delta(2\pi f - 3) + \frac{1}{2}\delta(2\pi f + 3)$$

$$\mathcal{F}\{x(t) + y(t)\} = \frac{2}{1 + j2\pi f} + \frac{1}{2}\delta(2\pi f - 3) + \frac{1}{2}\delta(2\pi f + 3)$$

2. Time Shifting

Theorem 6.3 (Time Shifting) If x(t) has Fourier transform X(f), then for any $t_0 \in \mathbb{R}$:

$$\mathcal{F}\{x(t-t_0)\} = X(f)e^{-j2\pi ft_0}$$

Example 6.2 Let $x(t) = e^{-t}u(t)$ and $t_0 = 1$. Compute $\mathcal{F}\{x(t-1)\}$. Solution:

Step 1: Write the shifted signal explicitly:

$$x(t-1) = e^{-(t-1)}u(t-1)$$

Here, u(t-1) is the unit step function that ensures the signal is causal, i.e., zero for t < 1.

Step 2: Use the definition of the Fourier transform:

$$\mathcal{F}\{x(t-1)\} = \int_{-\infty}^{+\infty} x(t-1)e^{-j2\pi ft} dt = \int_{-\infty}^{+\infty} e^{-(t-1)}u(t-1)e^{-j2\pi ft} dt$$

Step 3: Adjust the limits using u(t-1):

$$u(t-1) = 0$$
 for $t < 1$, $u(t-1) = 1$ for $t \ge 1$

So the integral becomes:

$$\mathcal{F}\{x(t-1)\} = \int_{1}^{\infty} e^{-(t-1)} e^{-j2\pi ft} dt$$

Step 4: Factor terms to simplify the exponent:

$$e^{-(t-1)}e^{-j2\pi ft} = e^{-(t-1)}e^{-j2\pi f(t-1)}e^{-j2\pi f} = e^{-(1+j2\pi f)(t-1)}e^{-j2\pi f}$$

Step 5: Change variable $\tau = t - 1 \implies t = \tau + 1, dt = d\tau$:

$$\mathcal{F}\{x(t-1)\} = \int_0^\infty e^{-(1+j2\pi f)\tau} e^{-j2\pi f} d\tau = e^{-j2\pi f} \int_0^\infty e^{-(1+j2\pi f)\tau} d\tau$$

Step 6: Evaluate the integral:

$$\int_0^\infty e^{-(1+j2\pi f)\tau} d\tau = \frac{1}{1+j2\pi f}$$

Step 7: Final result:

$$\mathcal{F}\{x(t-1)\} = \frac{1}{1+j2\pi f} e^{-j2\pi f}$$

Remark 6.5 The unit step u(t-1) is included in the integral limits, which is why it does not appear explicitly in the final formula, but it is essential to make the signal causal.

3. Frequency Shifting (Modulation)

Theorem 6.4 (Frequency Shifting) If x(t) has Fourier transform X(f), then

$$\mathcal{F}\{x(t)e^{j2\pi f_0 t}\} = X(f - f_0)$$

Example 6.3 *Let* $x(t) = e^{-t}u(t)$ *and* $f_0 = 2$.

Compute the Fourier transform of $x(t)e^{j2\pi(2)t} = x(t)e^{j4\pi t}$.

Solution:

Step 1: Write the signal explicitly with the unit step:

$$x(t)e^{j4\pi t} = e^{-t}u(t)\cdot e^{j4\pi t} = e^{-t}e^{j4\pi t}u(t)$$

Here, u(t) ensures the signal is causal (zero for t < 0).

Step 2: Use the definition of the Fourier transform:

$$\mathcal{F}\{x(t)e^{j4\pi t}\} = \int_{-\infty}^{+\infty} e^{-t}e^{j4\pi t}u(t) e^{-j2\pi ft} dt$$

Combine exponentials:

$$e^{j4\pi t} \cdot e^{-j2\pi ft} = e^{-j2\pi ft} \cdot e^{j2\pi(2)t} = e^{-j2\pi(f-2)t}$$

So the integral becomes:

$$\mathcal{F}\{x(t)e^{j4\pi t}\} = \int_0^\infty e^{-t}e^{-j2\pi(f-2)t} dt$$

- The lower limit 0 comes from u(t). - The upper limit is $+\infty$ because the signal exists for all $t \geq 0$.

Step 3: Combine terms in the exponent:

$$e^{-t} \cdot e^{-j2\pi(f-2)t} - e^{-(1+j2\pi(f-2))t}$$

Step 4: Integrate:

$$\int_0^\infty e^{-(1+j2\pi(f-2))t} dt = \frac{1}{1+j2\pi(f-2)}$$

Step 5: Final result:

$$\mathcal{F}\{x(t)e^{j4\pi t}\} = \frac{1}{1 + j2\pi(f-2)}$$

Remark: Multiplying by $e^{j2\pi f_0t}$ in time shifts the Fourier transform in frequency by f_0 , here $f_0 = 2$. The unit step u(t) ensures the integral starts at 0.

4. Differentiation in Time

Theorem 6.5 (Time Differentiation) If x(t) has Fourier transform X(f), then

$$\mathcal{F}\left\{\frac{dx}{dt}\right\} = j2\pi f X(f)$$

More generally, for the n-th derivative

$$\mathcal{F}\left\{\frac{d^n x(t)}{dt^n}\right\} = (j2\pi f)^n X(f), \quad n = 1, 2, 3, \dots$$

Example 6.4 *Let* $x(t) = e^{-t}u(t)$.

- 1. Compute the Fourier transform of $\frac{dx}{dt}(t)$ using the propertie of time differentiation.
- 2. Compute $\frac{dx}{dt}(t)$ and its Fourier transform using an other method. Solution:
- 1. Recall the property:

$$\mathcal{F}\left\{\frac{dx}{dt}(t)\right\} = j2\pi f X(f)$$

with $\mathcal{F}\{e^{-t}u(t)\} = \frac{1}{1+j2\pi f}$. Then

$$\mathcal{F}\left\{\frac{dx}{dt}(t)\right\} = j2\pi f \frac{1}{1+j2\pi f} = \frac{j2\pi f}{1+j2\pi f}$$

2. Step 1: Recall that $x(t) = e^{-t}u(t)$. Using the product rule for derivatives:

$$\frac{d}{dt}[e^{-t}u(t)] = \frac{de^{-t}}{dt}u(t) + e^{-t}\frac{du(t)}{dt}$$

Step 2: Compute each term:

$$1. \frac{de^{-t}}{dt}u(t) = -e^{-t}u(t)$$

2. $\frac{du(t)}{dt} = \delta(t)$ by definition of the Dirac delta

So the derivative is:

$$\frac{dx}{dt}(t) = -e^{-t}u(t) + e^{-t}\delta(t)$$

But notice that $e^{-t}\delta(t) = \delta(t)$ because $\delta(t)$ "samples" the function at t = 0:

$$\int_{-\infty}^{\infty} e^{-t} \delta(t) \phi(t) dt = \phi(0) e^{0} = \phi(0) = \int_{-\infty}^{\infty} \delta(t) \phi(t) dt$$

That is $e^{-t}\delta(t) = \delta(t)$ in distribution sens. Hence, we can write:

$$\frac{dx}{dt}(t) = \delta(t) - e^{-t}u(t)$$

Step 3: Fourier transform of the derivative Using linearity:

$$\mathcal{F}\left\{\frac{dx}{dt}(t)\right\} = \mathcal{F}\{\delta(t)\} - \mathcal{F}\{e^{-t}u(t)\}$$

Step 4: Fourier transforms of each term:

1.
$$\mathcal{F}\{\delta(t)\}=1$$

2.
$$\mathcal{F}\{e^{-t}u(t)\} = \frac{1}{1+j2\pi f}$$

So we get:

$$\mathcal{F}\left\{\frac{dx}{dt}\right\} = 1 - \frac{1}{1 + j2\pi f}$$

Step 5: Simplify the expression:

$$1 - \frac{1}{1 + i2\pi f} = \frac{1 + j2\pi f - 1}{1 + i2\pi f} = \frac{j2\pi f}{1 + i2\pi f}$$

Final Result:

$$\frac{dx}{dt} = \delta(t) - e^{-t}u(t), \quad \mathcal{F}\left\{\frac{dx}{dt}\right\} = \frac{j2\pi f}{1 + j2\pi f}$$

Remark 6.6 The delta function appears because of the derivative of the unit step u(t), and it is crucial to include it for a correct Fourier transform.

5. Convolution in Time

Theorem 6.6 (Convolution) If x(t) and y(t) have Fourier transforms X(f) and Y(f), then

$$\mathcal{F}\{x(t) * y(t)\} = X(f) \cdot Y(f)$$

Example 6.5 Let $x(t) = e^{-t}u(t)$ and y(t) = u(t). Compute the convolution x(t) * y(t) and its Fourier transform. Solution:

Step 1: Recall the definition of convolution:

$$(x * y)(t) = \int_{-\infty}^{+\infty} x(\tau) y(t - \tau) d\tau$$

Since both x(t) and y(t) are causal (u(t)), the integral limits reduce to:

$$(x * y)(t) = \int_0^t x(\tau) y(t - \tau) d\tau$$

Step 2: Substitute $x(\tau) = e^{-\tau}u(\tau)$ and $y(t-\tau) = u(t-\tau)$:

- $u(\tau) = 1 \; for \; \tau \ge 0$
- $u(t \tau) = 1 \; for \; 0 \le \tau \le t$

$$(x*y)(t) = \int_0^t e^{-\tau} \cdot 1 \, d\tau$$

Step 3: Evaluate the integral:

$$\int_0^t e^{-\tau} d\tau = \left[-e^{-\tau} \right]_0^t = -e^{-t} + e^0 = 1 - e^{-t}$$

So the convolution result is:

$$x(t) * y(t) = 1 - e^{-t}$$

Step 4: Verify with the direct Fourier transform

$$\mathcal{F}\{1 - e^{-t}\} = \mathcal{F}\{1\} - \mathcal{F}\{e^{-t}u(t)\} = \frac{1}{j2\pi f} - \frac{1}{1 + j2\pi f}$$

- This matches X(f)Y(f) by the convolution theorem. Indeed, Fourier transforms of x(t) and y(t):
- 1. $x(t) = e^{-t}u(t) \implies X(f) = \frac{1}{1+j2\pi f}$
- 2. $y(t) = u(t) \implies Y(f) = \frac{1}{j2\pi f} + \pi \delta(f)$
- Often in examples, the $\delta(f)$ term is ignored when focusing on $f \neq 0$. Recall the convolution theorem:

$$\mathcal{F}\{x(t) * y(t)\} = X(f) Y(f)$$

we have

$$X(f)Y(f) = \frac{1}{1+j2\pi f} \cdot \frac{1}{j2\pi f} = \frac{1}{(j2\pi f)(1+j2\pi f)}$$

Partial fraction decomposition:
$$\frac{1}{(j2\pi f)(1+j2\pi f)} = \frac{1}{j2\pi f} - \frac{1}{1+j2\pi f}$$
$$\implies X(f)Y(f) = \frac{1}{j2\pi f} - \frac{1}{1+j2\pi f} = \mathcal{F}\{1-e^{-t}\}$$

Remark 6.7 - Convolution in the time domain corresponds to multiplication in the frequency domain.

- The unit step u(t) determines the integration limits and ensures causality.

6. Multiplication in Time

Theorem 6.7 (Time Multiplication) If x(t) and y(t) have Fourier transforms X(f) and Y(f), then

$$\mathcal{F}\{x(t)\,y(t)\} = X(f) * Y(f)$$

where * denotes convolution in frequency.

Example 6.6 Let x(t) = u(t) and y(t) = u(t-1). Compute the Fourier transform of the product x(t)y(t).

Solution:

Step 1: Write the product explicitly using the unit step functions:

$$x(t)y(t) = u(t) \cdot u(t-1)$$

- u(t) = 0 for t < 0, 1 for $t \ge 0$ - u(t - 1) = 0 for t < 1, 1 for $t \ge 1$ So the product is:

$$x(t)y(t) = \begin{cases} 0, & t < 1 \\ 1, & t \ge 1 \end{cases} = u(t-1)$$

Step 2: Recall the Fourier transform of a shifted unit step:

$$\mathcal{F}\{u(t-a)\} = \frac{1}{j2\pi f}e^{-j2\pi fa} + \pi\delta(f)$$

Here, a = 1. *So:*

$$\mathcal{F}\{u(t-1)\} = \frac{1}{j2\pi f}e^{-j2\pi f} + \pi\delta(f)$$

Step 3: Connect to the convolution property

- The Fourier transform of a product of two signals in time is equal to the convolution of their Fourier transforms:

$$\mathcal{F}\{x(t)y(t)\} = X(f) * Y(f)$$

- Here:

$$X(f) = \mathcal{F}\{u(t)\} = \frac{1}{j2\pi f} + \pi \delta(f)$$
$$Y(f) = \mathcal{F}\{u(t-1)\} = \frac{1}{j2\pi f} e^{-j2\pi f} + \pi \delta(f)$$

- The direct computation gave

$$X(f) * Y(f) = \int_{-\infty}^{\infty} X(\lambda) Y(f - \lambda) d\lambda = \mathcal{F}\{u(t - 1)\} = \mathcal{F}\{x(t)y(t)\}$$

Remark 6.8 - This shows that multiplying two signals in time corresponds to convolution in frequency.

- This is useful for modulated signals or windowed signals, where one signal acts as a "window" for the other.

7. Fourier Transform: Frequency Derivative Property

Theorem 6.8 (Frequency Derivative Property) Let x(t) be an absolutely integrable signal with Fourier transform

$$X(f) = \mathcal{F}\{x(t)\}.$$

Then the derivative of X(f) with respect to frequency f is given by:

$$\frac{dX(f)}{df} = \mathcal{F}\{-j2\pi t \, x(t)\}.$$

Proof.

1. By definition, the Fourier transform of x(t) is

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt.$$

2. Differentiating X(f) with respect to f:

$$\frac{dX(f)}{df} = \int_{-\infty}^{\infty} x(t) \frac{d}{df} \left(e^{-j2\pi ft} \right) dt.$$

3. Since

$$\frac{d}{df}e^{-j2\pi ft} = -j2\pi t \, e^{-j2\pi ft},$$

we have

$$\frac{dX(f)}{df} = \int_{-\infty}^{\infty} (-j2\pi t \, x(t)) \, e^{-j2\pi ft} \, dt.$$

4. Recognizing this as a Fourier transform:

$$\frac{dX(f)}{df} = \mathcal{F}\{-j2\pi t \, x(t)\}.$$

Example 6.7 Let

$$x(t) = e^{-t}u(t),$$

where u(t) is the unit step function. Compute $\frac{dX(f)}{df}$. Solution:

Step 1: Fourier transform of x(t)

$$X(f) = \mathcal{F}\{x(t)\} = \int_0^\infty e^{-t} e^{-j2\pi ft} dt = \int_0^\infty e^{-(1+j2\pi f)t} dt = \frac{1}{1+j2\pi f}.$$

Step 2: Write the integral

$$\frac{dX(f)}{df} = \int_0^\infty \left(-j2\pi t \, e^{-t} \right) e^{-j2\pi f t} dt = -j2\pi \int_0^\infty t \, e^{-(1+j2\pi f)t} dt$$

Let $\alpha = 1 + j2\pi f$, then:

$$\frac{dX(f)}{df} = -j2\pi \int_0^\infty t \, e^{-\alpha t} dt$$

Step 3: Use the standard integral

$$\int_0^\infty t \, e^{-\alpha t} dt = \frac{1}{\alpha^2}, \quad \Re(\alpha) > 0$$

Hence:

$$\frac{dX(f)}{df} = -j2\pi \cdot \frac{1}{(1+j2\pi f)^2} = -\frac{j2\pi}{(1+j2\pi f)^2}$$

Step 4: Verification by direct differentiation

$$\frac{dX(f)}{df} = \frac{d}{df} \left(\frac{1}{1 + j2\pi f} \right) = -\frac{j2\pi}{(1 + j2\pi f)^2}.$$

Step 5: Conclusion

$$\frac{dX(f)}{df} = \mathcal{F}\{-j2\pi t \, e^{-t}u(t)\} = -\frac{j2\pi}{(1+j2\pi f)^2}.$$

This confirms that multiplication by t in the time domain corresponds to differentiation with respect to f in the frequency domain.

8. Fourier Transform of the Complex Conjugate

Theorem 6.9 (Fourier Transform of Complex Conjugate) Let x(t) be a signal with Fourier transform

$$X(f) = \mathcal{F}\{x(t)\}.$$

Then the Fourier transform of the complex conjugate $\overline{x(t)}$ is given by:

$$\mathcal{F}\{\overline{x(t)}\} = \overline{X(-f)}.$$

Proof.

1. By definition, the Fourier transform of $\overline{x(t)}$ is

$$\mathcal{F}\{\overline{x(t)}\} = \int_{-\infty}^{\infty} \overline{x(t)} \, e^{-j2\pi ft} \, dt$$

2. Consider X(-f):

$$X(-f) = \int_{-\infty}^{\infty} x(t) e^{j2\pi ft} dt$$

3. Take the complex conjugate:

$$\overline{X(-f)} = \int_{-\infty}^{\infty} \overline{x(t)} \, e^{-j2\pi ft} \, dt$$

4. Hence:

$$\mathcal{F}\{\overline{x(t)}\} = \overline{X(-f)}$$

Example 6.8 Let

$$x(t) = e^{-j2\pi f_0 t}.$$

Step 1: Fourier transform of x(t)

$$X(f) = \delta(f - f_0)$$

Step 2: Complex conjugate of x(t)

$$\overline{x(t)} = e^{j2\pi f_0 t}$$

Step 3: Fourier transform of $\overline{x(t)}$

$$\mathcal{F}\{\overline{x(t)}\} = \delta(f + f_0) = \overline{X(-f)}$$

This verifies the theorem.

Remark 6.9 - For real signals, $\overline{x(t)} = x(t)$.

- Therefore, $X(-f) = \overline{X(f)}$, which is the conjugate symmetry property.

6.2 Inverse Fourier Transform

6.2.1 Definition

If X(f) is the Fourier transform of x(t), then the original signal x(t) can be recovered by the **inverse Fourier transform**:

$$x(t) = \mathcal{F}^{-1}\{X(f)\} = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$$

- This integral recovers the time-domain signal from its frequency-domain representation.

Example 6.9 Given

$$X(f) = \frac{1}{1 + j2\pi f},$$

find $x(t) = \mathcal{F}^{-1}\{X(f)\}$.

Proof. We recognize this as a standard Fourier pair:

$$\mathcal{F}\lbrace e^{-at}u(t)\rbrace = \frac{1}{a+i2\pi f}, \quad a > 0$$

Comparing with $X(f) = \frac{1}{1+j2\pi f}$, we have a = 1. Therefore, the inverse Fourier transform is:

$$x(t) = e^{-t}u(t)$$

6.2.2 Properties of the Inverse Fourier Transform

Theorem 6.10 (Linearity)

$$\mathcal{F}^{-1}\{aX_1(f) + bX_2(f)\} = ax_1(t) + bx_2(t)$$

Proof. Follows directly from the linearity of the integral:

$$\int (aX_1(f) + bX_2(f))e^{j2\pi ft}df = a \int X_1(f)e^{j2\pi ft}df + b \int X_2(f)e^{j2\pi ft}df$$

Example 6.10

$$X(f) = 2X_1(f) - X_2(f) \implies x(t) = 2x_1(t) - x_2(t)$$

Theorem 6.11 (Time Shifting)

$$\mathcal{F}^{-1}\{X(f)e^{-j2\pi f f_0}\} = x(t - f_0)$$

Proof.

$$\mathcal{F}^{-1}\{X(f)e^{-j2\pi ff_0}\} = \int_{-\infty}^{\infty} X(f)e^{-j2\pi ff_0}e^{j2\pi ft}df = \int_{-\infty}^{\infty} X(f)e^{j2\pi f(t-f_0)}df = x(t-f_0)$$

Example 6.11 If $X(f) = \frac{1}{1+j2\pi f}$ and $f_0 = 1$, then

$$x(t) = e^{-(t-1)}u(t-1)$$

Theorem 6.12 (Frequency Shifting)

$$\mathcal{F}^{-1}\{X(f-f_0)\} = x(t)e^{j2\pi f_0 t}$$

Proof.

$$\mathcal{F}^{-1}\{X(f-f_0)\} = \int X(f-f_0)e^{j2\pi ft}df$$

Change of variable $u = f - f_0$, du = df:

$$= \int X(u)e^{j2\pi(u+f_0)t}du = e^{j2\pi f_0t} \int X(u)e^{j2\pi ut}du = x(t)e^{j2\pi f_0t}$$

Example 6.12 If $X(f) = \frac{1}{1+j2\pi f}$ and $f_0 = 2$, then

$$x(t) = e^{-t}u(t)e^{j4\pi t}$$

Theorem 6.13 (Scaling)

$$\mathcal{F}^{-1}{X(af)} = \frac{1}{|a|}x\left(\frac{t}{a}\right), \quad a \neq 0$$

Proof.

$$\mathcal{F}^{-1}\{X(af)\} = \int X(af)e^{j2\pi ft}df$$

Substitute $u = af \implies du = adf$:

$$= \int X(u)e^{j2\pi\frac{u}{a}t}\frac{du}{a} = \frac{1}{|a|}\int X(u)e^{j2\pi u\frac{t}{a}}du = \frac{1}{|a|}x\left(\frac{t}{a}\right)$$

Example 6.13 If $X(f) = \frac{1}{1+j2\pi f}$ and a = 2, then

$$x(t) = \frac{1}{2}e^{-t/2}u(t/2)$$

Theorem 6.14 (Conjugation)

$$\mathcal{F}^{-1}\{\overline{X(f)}\} = \overline{x(-t)}$$

Proof.

$$\mathcal{F}^{-1}\{\overline{X(f)}\} = \int \overline{X(f)}e^{j2\pi ft}df$$

Change variable u = -f, du = -df:

$$= \int \overline{X(-u)}e^{-j2\pi ut}(-du) = \int \overline{X(-u)}e^{-j2\pi ut}du = \overline{x(-t)}$$

6.2.3 Parseval's Theorem (Conservation of Energy)

Theorem 6.15 (Parseval's Theorem) Let x(t) be a signal with Fourier transform

 $X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt.$

Then the total energy of the signal is conserved in the frequency domain:

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df.$$

Proof.

Step 1: Energy in time domain

The energy of the signal in the time domain is defined as

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} x(t) \overline{x(t)} dt.$$

Step 2: Express $\boldsymbol{x}(t)$ in terms of its Fourier transform

To connect the time-domain energy to the frequency domain, we use the inverse Fourier transform:

$$x(t) = \int_{-\infty}^{+\infty} X(f)e^{j2\pi ft}df.$$

- Writing x(t) in terms of X(f) allows us to express the time-domain energy as an integral over the frequency components. - Each frequency component X(f) contributes to x(t), and therefore to the total energy. Similarly, the complex conjugate is:

$$\overline{x(t)} = \int_{-\infty}^{+\infty} \overline{X(\nu)} e^{-j2\pi\nu t} d\nu.$$

Step 3: Substitute into the energy integral

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} X(f) e^{j2\pi f t} df \right) \left(\int_{-\infty}^{+\infty} \overline{X(\nu)} e^{-j2\pi \nu t} d\nu \right) dt$$

- Now the energy integral is expressed entirely in terms of the frequency-domain representation.
- This is why we first wrote x(t) in terms of X(f).

Step 4: Rearrange as double integral

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} \int_{-\infty}^{\infty} X(f) \overline{X(\nu)} \left(\int_{-\infty}^{\infty} e^{j2\pi(f-\nu)t} dt \right) df d\nu$$

- The inner integral over t gives the Dirac delta:

$$\int_{-\infty}^{+\infty} e^{j2\pi(f-\nu)t} dt = \delta(f-\nu)$$

Step 5: Apply the sifting property of the Dirac delta

$$\int_{-\infty}^{+\infty} X(f)\overline{X(\nu)}\delta(f-\nu)df = X(\nu)\overline{X(\nu)} = |X(\nu)|^2$$

- The delta function "picks out" the value at $f = \nu$, collapsing the double integral into a single integral.

Step 6: Integrate over ν

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(\nu)|^2 d\nu = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

- This confirms that the total energy is conserved in the frequency domain.

Example 6.14 Let

$$x(t) = e^{-t}u(t),$$

where u(t) is the unit step function. Verify Parseval's theorem. Step 1: Energy in time domain

$$\int_0^\infty |x(t)|^2 dt = \int_0^\infty e^{-2t} dt = \frac{1}{2}.$$

Step 2: Fourier transform of x(t)

$$X(f) = \int_0^\infty e^{-t} e^{-j2\pi ft} dt = \frac{1}{1 + j2\pi f}.$$

Step 3: Energy in frequency domain

$$\int_{-\infty}^{\infty} |X(f)|^2 df = \int_{-\infty}^{\infty} \frac{1}{1 + (2\pi f)^2} df$$

Change of variable $u = 2\pi f$, $df = du/(2\pi)$:

$$\int_{-\infty}^{\infty} |X(f)|^2 df = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{du}{1+u^2} = \frac{1}{2\pi} \cdot \pi = \frac{1}{2}.$$

Step 4: Verification

$$\int_{0}^{\infty} |x(t)|^{2} dt = \frac{1}{2} = \int_{-\infty}^{\infty} |X(f)|^{2} df$$

This confirms Parseval's theorem.

6.2.4 Fourier Series Expansion of a Non-Periodic Function

1. Fourier Series of a Periodic Function

Let $f_T(t)$ be a periodic function with period T. Its Fourier series is:

$$f_T(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}, \quad \omega_0 = \frac{2\pi}{T}$$

where the Fourier coefficients are:

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f_T(t) e^{-jn\omega_0 t} dt$$

- Each c_n gives the amplitude and phase of the harmonic of frequency $n\omega_0$.

2. Non-Periodic Functions

For a non-periodic function f(t), we consider it as the limit of a periodic function with very large period $T \to \infty$.

- As T increases, $\omega_0 = \frac{2\pi}{T} \to 0$. The discrete frequencies $n\omega_0$ become continuous: $\omega = n\omega_0 \in \mathbb{R}$.
- The Fourier series sum transforms into an integral over all frequencies.

3. From Discrete Sum to Integral

Start from the Fourier series:

$$f_T(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}, \quad c_n = \frac{1}{T} \int_{-T/2}^{T/2} f_T(\tau) e^{-jn\omega_0 \tau} d\tau$$

Define the frequency increment:

$$\Delta\omega = \omega_0 = \frac{2\pi}{T}$$

Then:

$$c_n = \frac{\Delta\omega}{2\pi} \int_{-T/2}^{T/2} f_T(\tau) e^{-jn\Delta\omega\tau} d\tau$$
$$f_T(t) = \sum_{n=-\infty}^{\infty} \frac{\Delta\omega}{2\pi} \int_{-T/2}^{T/2} f_T(\tau) e^{-jn\Delta\omega\tau} d\tau e^{jn\Delta\omega t}$$

4. Limit as $T \to \infty$

Taking $T \to \infty \ (\Delta \omega \to 0)$:

$$f(t) = \lim_{T \to \infty} \sum_{n = -\infty}^{\infty} \frac{\Delta \omega}{2\pi} \int_{-T/2}^{T/2} f(\tau) e^{-jn\Delta\omega\tau} d\tau e^{jn\Delta\omega t}$$
$$\Rightarrow f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) e^{-j\omega\tau} d\tau \right] e^{j\omega t} d\omega$$

- The term in brackets is the Fourier transform:

$$F(\omega) = \int_{-\infty}^{\infty} f(\tau)e^{-j\omega\tau}d\tau$$

- Therefore, the inverse Fourier transform is:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

5. Interpretation

- Fourier series decomposes a periodic function into discrete harmonics.
- For a non-periodic function, the harmonics become continuous, forming a continuous spectrum.
- The Fourier transform is the continuous analogue of the Fourier series.
- The coefficients c_n become a continuous function $F(\omega)$ of frequency.

Example 6.15 Let $f(t) = e^{-at}u(t)$, a > 0.

$$F(\omega) = \int_0^\infty e^{-at} e^{-j\omega t} dt$$

$$= \int_0^\infty e^{-(a+j\omega)t} dt$$

$$= \left[\frac{-1}{a+j\omega} e^{-(a+j\omega)t} \right]_0^\infty$$

$$= 0 - \left(\frac{-1}{a+j\omega} \right) = \frac{1}{a+j\omega}$$

- This result shows that the non-periodic function $e^{-at}u(t)$ has a **continuous spectrum**, which is the limit of the Fourier series coefficients as $T \to \infty$.

6.3 Application of the Fourier Transform to Solving Differential Equations

The Fourier transform is a powerful tool to solve linear differential equations. It converts derivatives in the time domain into algebraic multiplication in the frequency domain, simplifying the solution process.

6.3.1 General Principle

Consider a linear differential equation of order n with constant coefficients:

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_1y'(t) + a_0y(t) = f(t),$$

where f(t) is a known input signal and y(t) is the unknown output. Steps to solve using Fourier transform:

1. Apply the Fourier transform to each term. For derivatives:

$$\mathcal{F}{y'(t)} = j2\pi f Y(f), \quad \mathcal{F}{y''(t)} = (j2\pi f)^2 Y(f), \quad \dots$$

2. The differential equation becomes an algebraic equation in the frequency domain:

$$((j2\pi f)^n + a_{n-1}(j2\pi f)^{n-1} + \dots + a_1(j2\pi f) + a_0)Y(f) = F(f),$$
where $F(f) = \mathcal{F}\{f(t)\}.$

3. Solve for Y(f):

$$Y(f) = \frac{F(f)}{(j2\pi f)^n + a_{n-1}(j2\pi f)^{n-1} + \dots + a_1(j2\pi f) + a_0}.$$

4. Apply the inverse Fourier transform to recover y(t):

$$y(t) = \mathcal{F}^{-1}\{Y(f)\}.$$

Remark 6.10 Differentiation in time corresponds to multiplication by $(j2\pi f)^n$ in frequency, simplifying the solution of linear differential equations.

Example 6.16 1. Example: First-Order Differential Equation Solve:

$$y'(t) + y(t) = e^{-t}u(t),$$

where u(t) is the unit step function. Proof. Step 1: Fourier Transform

$$\mathcal{F}\{y'(t)\} + \mathcal{F}\{y(t)\} = \mathcal{F}\{e^{-t}u(t)\}$$
$$(j2\pi f)Y(f) + Y(f) = \frac{1}{1+j2\pi f} \quad \Rightarrow \quad Y(f)(1+j2\pi f) = \frac{1}{1+j2\pi f}$$
$$\Rightarrow Y(f) = \frac{1}{(1+j2\pi f)^2}.$$

Step 2: Inverse Fourier Transform Using the known Fourier pair:

$$\mathcal{F}\{te^{-t}u(t)\} = \frac{1}{(1+i2\pi f)^2} \quad \Rightarrow \quad y(t) = te^{-t}u(t).$$

Solution:

$$y(t) = te^{-t}u(t).$$

3. Advantages

- Converts differential equations into algebraic equations in frequency.
- Handles signals defined for all $t \in (-\infty, \infty)$.
- Useful for analyzing linear time-invariant (LTI) systems and frequency response.
- Simplifies convolutions, since convolution in time corresponds to multiplication in frequency.