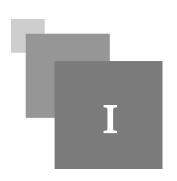

## Le Monde Microbien

Collection Cours De Microbiologie L2


Université Djilali Bounaama Khemis Miliana
Faculté des Sciences de la Nature et de la Vie
Département de Biologie
Dr FEDOUL Firdaous Faiza



# Table des matières

| I - Objectifs du '' Place de microorganismes dans le monde vivant''                | 3  |
|------------------------------------------------------------------------------------|----|
| II - Place de microorganismes dans le monde vivant                                 | 4  |
| 1. Arbre phylogénétique                                                            | 4  |
| 2. Exercice : Compréhension de l'arbre phylogénétique de Carl Woese                | 6  |
| 3. Système selon cinq règnes de Robert Whittaker                                   | 6  |
| 4. Exercice : Compréhension du système des cinq règnes de Robert Whittaker         | 8  |
| 5. Exercice : Analyse des systèmes de classification de Woese et Whittaker         | 9  |
| 6. Exercice : Connaissance des caractéristiques distinctives des domaines de Woese | 9  |
| 7. Exercice : Évaluation des travaux de Woese et Whittaker                         | 10 |
| 8. Exercice : Analyse de la classification des micro-organismes.quiz               | 10 |
| 9. Exercice : Évaluation des implications des classifications                      | 10 |
| Solutions des exercices                                                            | 11 |
| Ribliographie                                                                      | 13 |

# Objectifs du "Place de microorganismes dans le monde vivant"



Objectifs du "Place de microorganismes dans le monde vivant"

Chapitre 3 : Place de microorganismes dans le monde vivant

Le chapitre "Place de microorganismes dans le monde vivant" vise à :

- Décrire l'arbre phylogénétique proposé par Carl Woese qui montre les trois domaines du vivant : bactéries, archaea et eucaryotes. (Compréhension)
- Expliquer la classification des microorganismes selon le système des cinq règnes de Robert Whittaker. (Compréhension)
- Comparer les systèmes de classification des trois domaines de Woese et des cinq règnes de Whittaker. (Analyse)
- Identifier les caractéristiques distinctives des trois domaines du vivant selon Carl Woese. (Connaissance)
- Évaluer l'importance des travaux de Carl Woese et Robert Whittaker dans la compréhension de la place des microorganismes dans le monde vivant. (Évaluation)
- Classer les microorganismes dans les domaines et règnes appropriés selon les systèmes de Woese et Whittaker. (Analyse)
- Discuter les implications des classifications de Woese et Whittaker pour la recherche et l'étude des microorganismes. (Évaluation)

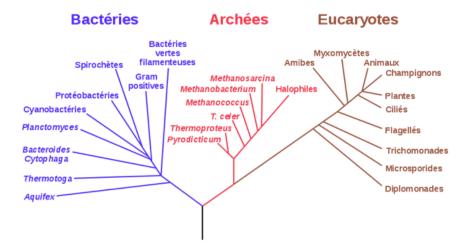
# Place de microorganismes dans le monde vivant



#### 1. Arbre phylogénétique

Arbre phylogénétique proposé par Carl Woese

Carl Woese, un microbiologiste américain, est célèbre pour avoir proposé une révision majeure de la classification du vivant en introduisant le concept de domaines. Son arbre phylogénétique, basé sur des analyses de séquences d'ARN ribosomal, a révélé trois domaines distincts du vivant : Bacteria (bactéries), Archaea (archées) et Eukaryota (eucaryotes). Voici un résumé de cet arbre phylogénétique :


Domaine Bacteria (Bactéries) : Les bactéries représentent l'un des trois domaines de la vie. Elles sont caractérisées par leur unicellularité et leur absence de noyau cellulaire. Les bactéries sont présentes dans une grande variété d'environnements, des sols aux océans en passant par les organismes vivants, et jouent des rôles essentiels dans de nombreux processus écologiques.

Domaine Archaea (Archées): Les archées sont également des micro-organismes unicellulaires, mais elles diffèrent des bactéries sur le plan moléculaire et biochimique. Les archées ont été initialement classées avec les bactéries, mais les études phylogénétiques de Woese ont révélé qu'elles formaient un groupe distinct. Les archées se trouvent dans des environnements extrêmes tels que les sources chaudes, les milieux salés et les environnements acides, mais elles sont également présentes dans des habitats plus communs.

Domaine Eukaryota (Eucaryotes) : Les eucaryotes sont des organismes unicellulaires ou multicellulaires caractérisés par la présence d'un noyau cellulaire et d'organites membranaires. Ce domaine comprend une grande diversité d'organismes, allant des simples levures et algues unicellulaires aux plantes, aux animaux et aux champignons multicellulaires. Les eucaryotes sont présents dans presque tous les environnements de la Terre et occupent une grande variété de niches écologiques.

L'arbre phylogénétique de Woese a révolutionné notre compréhension de la diversité du vivant en mettant en évidence les relations évolutives entre les trois domaines du vivant. Cette classification a eu un impact majeur sur de nombreux domaines de la biologie, de la microbiologie à l'écologie en passant par la biotechnologie.

#### Arbre phylogénétique de la vie



Carl Woese, un microbiologiste américain, est célèbre pour avoir proposé une révision majeure de la classification du vivant en introduisant le concept de domaines. Son arbre phylogénétique, basé sur des analyses de séquences d'ARN ribosomal, a révélé trois domaines distincts du vivant : Bacteria (bactéries), Archaea (archées) et Eukaryota (eucaryotes). Voici un résumé de cet arbre phylogénétique :

Domaine Bacteria (Bactéries) : Les bactéries représentent l'un des trois domaines de la vie. Elles sont caractérisées par leur unicellularité et leur absence de noyau cellulaire. Les bactéries sont présentes dans une grande variété d'environnements, des sols aux océans en passant par les organismes vivants, et jouent des rôles essentiels dans de nombreux processus écologiques.

Domaine Archaea (Archées): Les archées sont également des micro-organismes unicellulaires, mais elles diffèrent des bactéries sur le plan moléculaire et biochimique. Les archées ont été initialement classées avec les bactéries, mais les études phylogénétiques de Woese ont révélé qu'elles formaient un groupe distinct. Les archées se trouvent dans des environnements extrêmes tels que les sources chaudes, les milieux salés et les environnements acides, mais elles sont également présentes dans des habitats plus communs.

Domaine Eukaryota (Eucaryotes) : Les eucaryotes sont des organismes unicellulaires ou multicellulaires caractérisés par la présence d'un noyau cellulaire et d'organites membranaires. Ce domaine comprend une grande diversité d'organismes, allant des simples levures et algues unicellulaires aux plantes, aux animaux et aux champignons multicellulaires. Les eucaryotes sont présents dans presque tous les environnements de la Terre et occupent une grande variété de niches écologiques.

L'arbre phylogénétique de Woese a révolutionné notre compréhension de la diversité du vivant en mettant en évidence les relations évolutives entre les trois domaines du vivant. Cette classification a eu un impact majeur sur de nombreux domaines de la biologie, de la microbiologie à l'écologie en passant par la biotechnologie.

#### 2. Exercice: Compréhension de l'arbre phylogénétique de Carl Woese ion n°1 p.111

| Dé | crire l'arbre phylogénétique proposé par Carl Woese |
|----|-----------------------------------------------------|
|    | Composé de trois domaines                           |
|    | Composé de cinq domaines                            |
|    | Sont les Bactéries ; Archaea ; Eucaryotes           |
|    | Sont les Animaux ; végétaux ; Eucaryotes            |
|    | Sont les Hommes ; Archaea ; Eucaryotes              |

#### 3. Système selon cinq règnes de Robert Whittaker

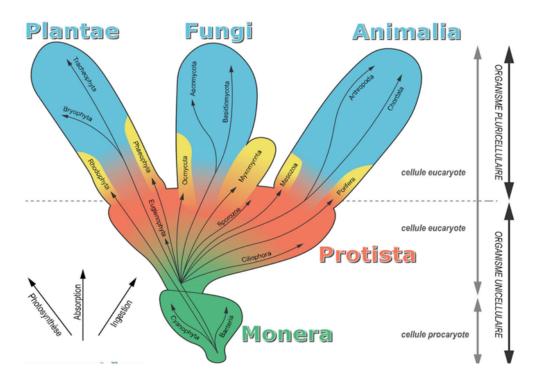
Le système en cinq règnes

Robert Whittaker, un écologiste américain, a proposé un système de classification en cinq règnes pour organiser la diversité du monde vivant. Ce système reconnaît cinq grands groupes de base, chacun représentant une branche distincte de l'arbre de la vie. Voici une vue d'ensemble de ces cinq règnes :

Règne Monera : Ce règne englobe les organismes unicellulaires prokaryotes, tels que les bactéries et les cyanobactéries (anciennement appelées algues bleues). Les organismes de ce règne sont caractérisés par l'absence de noyau cellulaire et d'organites membranaires.

Règne Protista : Les organismes du règne Protista sont principalement des eucaryotes unicellulaires, bien que certains puissent être multicellulaires. Ce règne comprend une grande diversité d'organismes, tels que les algues unicellulaires, les protozoaires et les organismes similaires à des champignons.

Règne Fungi: Ce règne regroupe les organismes eucaryotes, principalement multicellulaires, qui se nourrissent par absorption. Les champignons, y compris les moisissures, les levures et les champignons à mycélium, sont les principaux représentants de ce règne.


Règne Plantae : Les plantes, qui sont des organismes eucaryotes multicellulaires capables de photosynthèse, appartiennent à ce règne. Cela inclut une grande variété de plantes, des mousses et des fougères aux arbres et aux fleurs à fleurs.

Règne Animalia : Ce règne comprend tous les organismes eucaryotes multicellulaires qui se nourrissent en ingérant d'autres organismes ou des particules organiques. Les animaux, des invertébrés comme les insectes et les vers aux vertébrés comme les poissons, les oiseaux et les mammifères, appartiennent à ce règne.

Le système en cinq règnes de Whittaker offre une approche globale de la classification du monde vivant, en tenant compte de la diversité et des caractéristiques évolutives des organismes. Bien que d'autres systèmes de classification aient été proposés depuis lors, celui de Whittaker reste une référence importante dans le domaine de la biologie.



Voici un schéma représentant le système à cinq règnes de classification du vivant proposé par Robert Whittaker .



Voici un tableau récapitulatif représentant les cinq règnes de la classification du vivant selon Robert Whittaker :

| Règne     | Caractéristiques principales                                                                                                                                                                                             | Exemples                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Monères   | Organismes procaryotes unicellulaires sans noyau défini.<br>Inclut les bactéries et les cyanobactéries.<br>Organismes eucaryotes principalement unicellulaires,                                                          | Bactéries : Escherichia coli,<br>Cyanobactéries : Anabaena<br>Protozoaires : Amoeba, Algues : |
| Protistes | mais pouvant être multicellulaires simples. Très diversifiés.                                                                                                                                                            | Chlamydomonas, Myxomycètes :<br>Physarum                                                      |
| Mycètes   | Organismes eucaryotes multicellulaires (principalement), hétérotrophes, se nourrissant par absorption. Ils possèdent des parois cellulaires contenant de la chitine. Organismes eucaryotes multicellulaires autotrophes, | Champignons : Agaricus (champignon de Paris), Levures : Saccharomyces cerevisiae              |
| Plantes   | photosynthétiques. Ils ont des parois cellulaires contenant de la cellulose et des chloroplastes.  Organismes eucaryotes multicellulaires hétérotrophes, se                                                              | Plantes à fleurs : Rosa (rose), Conifères : Pinus (pin)                                       |
| Animaux   | nourrissant par ingestion. Ils n'ont pas de parois cellulaires.                                                                                                                                                          | Invertébrés : Insecta (insectes), Vertébrés : Homo sapiens (humains)                          |

Système selon cinq règnes de Robert Whittaker

#### 4. Exercice : Compréhension du système des cinq règnes de Robert Whittaker

| Les | Les cinq règnes selon Whittaker sont :          |  |  |  |  |
|-----|-------------------------------------------------|--|--|--|--|
|     | Monères (bactéries)                             |  |  |  |  |
|     | Protistes (protozoaires, algues unicellulaires) |  |  |  |  |
|     | Mycètes (champignons)                           |  |  |  |  |
|     | Plantes                                         |  |  |  |  |
|     | Hommes                                          |  |  |  |  |
|     | Animaux                                         |  |  |  |  |
|     | Pomme                                           |  |  |  |  |

E - 1

| 5. | Exercice: | Analyse des       | systèmes  | de d | classification | de | Woese et | Whitta               | <b>ker</b> n.11 |
|----|-----------|-------------------|-----------|------|----------------|----|----------|----------------------|-----------------|
| ~. |           | I III WI I DO GOD | DIDUCTION | ~~   | OTMUDITIOM OTT | ~~ | 11000000 | A A Larming Property | THE PLAN DOLL I |

| Comparer les systèmes de     | e classification of | des trois domaines   | de Woese et des cir     | nq règnes de Whi | ttaker      |
|------------------------------|---------------------|----------------------|-------------------------|------------------|-------------|
| Le système se base sur l     | a morphologie e     | t les modes de nu    | trition, divisant la vi | e en cinq règnes |             |
| Il a introduit une distinc   | tion plus fine en   | itre les bactéries e | t les archaea           |                  |             |
| Le système se base sur d     | les analyses gén    | étiques et divise la | vie en trois domain     | es, tandis       |             |
| Il n'a pas introduit une d   | listinction entre   | les bactéries et les | archaea                 |                  |             |
| 6. Exercice: Cor Woese       |                     | des caractéi         | ristiques distin        |                  | domaines de |
| : Identifier les caractérist | iques distinctive   | es des trois domair  | nes du vivant selon C   | Carl Woese       |             |
| Paroi cellulaire sans pep    | tidoglycane, me     | mbranes lipidique    | es distinctes.          |                  |             |
| Présence d'un noyau, or      | ganites membra      | naires comme les     | mitochondries.          |                  |             |
| Paroi cellulaire contenar    |                     | cane, absence de i   |                         |                  |             |
| Bactéries                    | S                   | Arc                  | chaea                   | Euc              | caryotes    |

#### 7. Exercice : Évaluation des travaux de Woese et Whittaker

[solution n°5 p.12]

| Complétez les pointillés          |            |                          |                                         |                                          |
|-----------------------------------|------------|--------------------------|-----------------------------------------|------------------------------------------|
| Les travaux de Woese ont révol    | utionné l  | la microbiologie en intr | oduisant une cl                         | assification basée sur la                |
| , tandis que a of                 | fert une   | vue d'ensemble fonctio   | nnelle et                               | des organismes.                          |
|                                   |            |                          |                                         |                                          |
| 8. Exercice: Analyse              | de la      | classification d         | es micro-o                              | organismes.quizolution n°6 p.12)         |
| •                                 |            |                          |                                         | myces cerevisiae) dans les domaines et   |
| règnes appropriés selon les syste |            |                          |                                         | •                                        |
| Domaine Eucaryotes (Woese)        | Règi       | ne Monères (Whittaker)   | Domaine l                               | Bactéries (Woese)                        |
| <u></u>                           | ,          |                          |                                         |                                          |
| Domaine Archaea (Woese)           | Règne !    | Mycètes (Whittaker)      | Règne Monèi                             | res (Whittaker)                          |
|                                   |            |                          | *************************************** | ······································   |
| Escherichia coli                  |            | Methanocoo               | ecus                                    | Saccharomyces cerevisiae                 |
|                                   |            |                          |                                         |                                          |
|                                   |            |                          |                                         |                                          |
|                                   |            |                          |                                         |                                          |
|                                   |            |                          |                                         |                                          |
|                                   |            |                          |                                         |                                          |
|                                   |            |                          |                                         |                                          |
|                                   |            |                          |                                         |                                          |
| ,                                 |            |                          |                                         |                                          |
| 9. Exercice: Évaluati             | ion de     | es implications of       | les classifi                            | cations [solution n°7 p.12]              |
| Discuter les implications des     | classific  | cations de Woese et      | Whittaker pou                           | ir la recherche et l'étude des micro-    |
| organismes (Woese; écologique     | es ; archa | aea ; virus )            |                                         |                                          |
| Le système de                     | a per      | mis une meilleure com    | préhension de                           | es relations évolutives entre les micro- |
| organismes, en particulier en di  | istinguan  | nt les d                 | es bactéries. Le                        | e système de Whittaker reste pertinent   |
| pour des études                   | et foncti  | ionnelles                |                                         |                                          |

les travaux de Carl Woese et de Robert Whittaker ont chacun apporté une perspective unique sur la place des microorganismes dans le monde vivant. Woese, avec son arbre phylogénétique des trois domaines, a révélé la profonde diversité génétique des microorganismes et leur rôle central dans l'évolution de la vie. D'un autre côté, Whittaker, avec son système des cinq règnes, a mis en avant la diversité structurelle et fonctionnelle des formes de vie, en situant les microorganismes parmi les êtres les plus fondamentaux.

### Solutions des exercices



| > 5          | Solution n°1                                        | Exercice p. 6 |
|--------------|-----------------------------------------------------|---------------|
| Dé           | crire l'arbre phylogénétique proposé par Carl Woese |               |
| <b>Y</b>     | Composé de trois domaines                           |               |
|              | Composé de cinq domaines                            |               |
| $\checkmark$ | Sont les Bactéries ; Archaea ; Eucaryotes           |               |
|              | Sont les Animaux ; végétaux ; Eucaryotes            |               |
|              | Sont les Hommes ; Archaea ; Eucaryotes              |               |
| > 5          | Solution n°2                                        | Exercice p. 8 |
| Les          | cinq règnes selon Whittaker sont :                  |               |
| <b>⊻</b>     | Monères (bactéries)                                 |               |
| $\checkmark$ | Protistes (protozoaires, algues unicellulaires)     |               |
| $\checkmark$ | Mycètes (champignons)                               |               |
| $\checkmark$ | Plantes                                             |               |
|              | Hommes                                              |               |
| $\checkmark$ | Animaux                                             |               |
|              | Pomme                                               |               |
|              |                                                     |               |

> Solution n°3

Comparer les systèmes de classification des trois domaines de Woese et des cinq règnes de Whittaker

| Woese                                                                                     | Whittaker                                                                                       |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Le système se base sur des analyses génétiques et divise la vie en trois domaines, tandis | Le système se base sur la morphologie et les modes de nutrition, divisant la vie en cinq règnes |

Il a introduit une distinction plus fine entre les bactéries et les archaea

Il n'a pas introduit une distinction entre les bactéries et les archaea

> **Solution** n°4

: Identifier les caractéristiques distinctives des trois domaines du vivant selon Carl Woese

| Bactéries                                                       | Archaea                                                                | Eucaryotes                                                                 |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Paroi cellulaire contenant du peptidoglycane, absence de noyau. | Paroi cellulaire sans peptidoglycane, membranes lipidiques distinctes. | Présence d'un noyau, organites<br>membranaires comme les<br>mitochondries. |  |

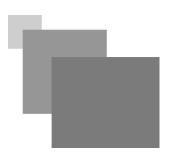
> Solution n°5

#### Complétez les pointillés

Les travaux de Woese ont révolutionné la microbiologie en introduisant une classification basée sur la génétique, tandis que Whittaker a offert une vue d'ensemble fonctionnelle et écologique des organismes.

> **Solution** n°6

Classer les micro-organismes (ex : Escherichia coli, Methanococcus, Saccharomyces cerevisiae) dans les domaines et règnes appropriés selon les systèmes de Woese et Whittaker.


| Escherichia coli          | Methanococcus             | Saccharomyces cerevisiae   |
|---------------------------|---------------------------|----------------------------|
| Domaine Bactéries (Woese) | Domaine Archaea (Woese)   | Domaine Eucaryotes (Woese) |
| Règne Monères (Whittaker) | Règne Monères (Whittaker) | Règne Mycètes (Whittaker)  |

> **Solution** n°7

Discuter les implications des classifications de Woese et Whittaker pour la recherche et l'étude des microorganismes (Woese ; écologiques ; archaea ; virus )

Le système de Woese a permis une meilleure compréhension des relations évolutives entre les micro-organismes, en particulier en distinguant les archaea des bactéries. Le système de Whittaker reste pertinent pour des études écologiques et fonctionnelles

### **Bibliographie**



- (1) Henri Leclerc, Jean-Louis Gaillard et Michel Simonet, 1999- Microbiologie générale. Ed. Doin, Paris
- (2) Jerome Perry, James Staley et Stephen Lory, 2004- Microbiologie-Cours et questions de révision. Ed. Dunod, Paris
- (3) Jean-Pierre Dedet, 2007- La microbiologie, de ses origines aux maladies émergentes. Ed. Dunod, Paris