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1.1Quantization of Energy 

The foundation of quantum mechanics was laid in 1900 with Max Planck’s discovery of the 

quantized nature of energy. When Planck developed his formula for black body radiation 
he was forced to assume that the energy exchanged between a black body and its thermal 
(electromagnetic) radiation is not a continuous quantity but needs to be restricted to discrete  
values depending on the (angular-) frequency of the radiation. Planck’s formula can explain 

– as we shall see – all features of the black body radiation and his finding is phrased in the 
following way: 
 

 

 
Here ω denotes the angular frequency ω = 2πν. We will drop the prefix ”angu lar” 

in the following and only refer to it as the frequency. We will also bear in mind the 
connection to the wavelength λ given by c = λν, where c is the speed of light, and to the 

period T given by ν =  1 . 

If we compare the energy of the photon as given by special relativity E = pc and quantum 
mechanics E = hω we get the momentum of the photon: 

ω 

k = 
c 

⇒ E = ℏkc ⇒ p = ℏk . 

 

Momentum of the photon 

 
Proposition (Bohr’s complementarity principle) 

Wave and particle are two aspects of describing physical phenomena, which are complementary 
to each other. 

Depending on the measuring instrument used, either waves or particles are observed, but never 
both at the same time, i.e. wave- and particle-nature are not simultaneously observable. 

 

1.2 Wave Properties of Matter 

As we will see in this section, not only radiation, but also massive particles are in need of 

a more sophisticated description than given by classical mechanics. To associate micro-  
scopical (quantum) objects, as for example electrons, with idealized (especially localized) 
point-particles, carrying sharp momenta, is not only misleading, but simply wrong and  

can not account for all observed phenomena. A very important step towards a more complete 
description was Louis de Broglie’s proposal of wavelike behaviour of matter in 1923, which 
he received the Nobel prize for in 1929. 

 

 

 

𝑝 →⃗⃗⃗⃗ ⃗⃗ photon = ℏ→𝑘⃗⃗  

Proposition 1.1 Energy is quantized and given in units of E = ℎω 



1.2.1 Louis de Broglie’s Hypothesis 

In view of particle properties for light waves – photons – Louis de Broglie ventured to consider 

the reverse phenomenon, he proposed to assign wave properties to matter, which we will 
formulate here in the following way: 

 

 
 
 

to matter in (reversed) analogy to photons. If we then express the wavelength λ th√r ough 

the momentum p and use the form of the kinetic energy E = p2/2m to write p = 2mE 

we directly get the de Broglie wavelength λdeBroglie of massive particles. 

 
In this connection the notion of matter waves was introduced. De Broglie’s view was that 

there exists a pilot wave which leads the particle on definite trajectories. This point of view 

– wave and particle – being in contrast to Bohr’s view leads, however, into serious difficult ies 
as we shall see. 

 
Note that above wave assignment was made for free particles, i.e. particles that are not 

subjected to any outer potential. The question whether the potential energy would influence 

his hypothesis was also raised by de Broglie and will be tangible when we con- sider 
Schrödinger’s theory where also the nature of the waves becomes more evident in terms 
of Max Born’s probability interpretation. 
 

 

2. Electron Diffraction from a Crystal 

To test his hypothesis de Broglie proposed an experiment with electrons. He observed that, 

electrons with a kinetic energy of several eV and mass me = 0, 5 MeV would have a de 

Broglie wavelength of a few Å. For example, for an energy of 10 eV we obtain λdeBroglie = 

3, 9 Å, which is the same order of magnitude as the lattice spacing of atoms in crystals, thus 

making it possible to diffract electrons from the lattice analogously to the diffraction of 

light from a grating. 

 
The corresponding experiment has been performed by C.Davisson and L.Germer in 

1927 and independently by G.P. Thomson. It involved electrons which were sent with 

appropriate velocity onto a nickel crystal with lattice spacing d ∼= 0, 92 Å, see Fig. 1. 

 

The intensity of the outgoing electron beam was then measured for different angles, 



 

reproducing the diffraction pattern postulated by W.H.Bragg and (his son) W.L.Bragg 

for X-rays. The similarity of X-ray- and electron-diffraction can be seen in Fig. 2. 

 

The Bragg condition for constructive interference is , n ∈ N . 

 

The observation of an intensity maximum of the diffraction (Bragg peak) for a scat -  
tering angle ϕ = 50◦, which translates to the angle in the Bragg condition of Θ = 65◦, gives 
us 

⇒ λ = 2 × 0, 92 Å ×  sin 65◦ = 1, 67 Å ,  

which is in perfect accordance with the de Broglie wavelength for an acceleration voltage of 

U = 54 V used in this experiment. 

 
The Davisson-Germer experiment thus helped to confirm the wavelike nature of matter 

 

 
 

Figure 1.: Davisson-Germer Experiment: a) An 

electron beam is diffracted from a nickel crysta l 
and the intensity of the outgoing beam is 
measured.  b) Scheme of the Bragg diffraction from 
a crystal with lattice spacing d,  
and to validate the claims of early quantum mechanics.  
Davisson and Thomson6 were awarded the Nobel prize 

in 1937.

  



 

 

Figure 1.12: Comparison of X-ray- (left) and electron- (right) diffraction patterns caused 
by the same aperture, namely a small hole in an aluminium foil; pictures from Ref. [2]  

3. Heisenberg’s Uncertainty Principle 

We now want to introduce a quantum mechanical principle, Heisenberg’s uncertainty prin- 
ciple that is somehow difficult to grasp conceptually even though the mathematics behind is 
straightforward. Before we will derive it formally, which we will do in Sect. 2.6, we try to 
make it plausible by more heuristic means, namely by the Heisenberg microscope. The 
Gedankenexperiment of the Heisenberg microscope needs to be seen more as an example for 

the application of the uncertainty principle, than a justification of the principle itself. 
 

 

3.1 Heisenberg’s Microscope 

Let’s start by detecting the position of an electron by scattering of light and picturing it 

on a screen. The electron will then appear as the central dot (intensity maximum) on 
the screen, surrounded by bright and dark concentric rings (higher order intens ity 
maxima/minima). Since the electron acts as a light source we have to consider it as an 

aperture with width d where we know that the condition for destructive interference is 
 

sin φ = 
nλ 

d 
, n ∈ N .  

So following Eq. (1.23) the smallest length resolvable by a microscope is given by 

d = λ/ sin φ and thus the uncertainty of localization of an electron can be written as 

 

∆x = d = 
λ 

 
 

sin φ 

.  

It seems as if we chose the wavelength λ to be small enough and sin φ to be big, then 
∆x could become arbitrarily small. But, as we shall see, the accuracy increases at the 
expense of the momentum accuracy. Why is that? The photons are detected on the screen 
but their direction is unknown within an angle φ resulting in an uncertainty of the electron’s 

recoil within an interval ∆. So we can identify the momentum uncertainty (in the direction 
of the screen) of the photon with that of the electron 
 
 



 

 
 

where we inserted the momentum of the photon pPhoton = hk = h/λ in the last step.  

 

 
which he received the Nobel prize for in 1932. We will further see that the accuracy can be 

increased by a factor 4π and that the above relation can be generalized to the statement 

Heisenberg’s Uncertainty relation: ∆ x ∆ px = h 



 

 

 

This is a fundamental principle that has nothing to do with technical imperfections of 

the measurement apparatus. We can phrase the uncertainty principle in the following way: 

 

4. Energy–Time Uncertainty Principle 

We now want to construct another uncertainty relation, the energy–time uncertainty, which 

describes the relation between the uncertainties ∆t for the time a physical process lasts and 

∆E for the respective energy. Consider for example a wave packet traveling along the x-

axis with velocity v. It takes the time ∆t to cover the distance ∆x. We can thus write 

energy:  𝐸 =
𝑝2

2𝑚
           velocity     

v=
∆𝑥

∆𝑡
 
  

Calculating the variation ∆E of the energy E and expressing ∆t from the right hand side 
of Eq. (1.26) by the velocity v and substituting v = p/m we get 

 

variation: ∆E= 
p    ∆p 

m     time period: ∆t = 

∆x m 

= 

v p 

∆x .  

The right hand side represents the period of time where the wave is localizable. When we 
now multiply ∆t with ∆E we arrive at:

 
 

 

We can conclude that there is a fundamental complementarity between energy and time.  
An important consequence of the energy–time uncertainty is the finite “natural” width of 

the spectral line
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Proposition  

Whenever a position measurement is accurate (i.e. precise information about the 
current position of a particle), the information about the momentum is inaccurate  
– uncertain – and vice versa. 



 

 


