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Outline

 Lock-Based Protocols
 Timestamp-Based Protocols
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Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item
 Data items can be locked in two modes :

1.  exclusive (X) mode. Data item can be both read as well  as   
written. X-lock is requested using lock-X instruction.

2.  shared (S) mode. Data item can only be read. S-lock is          
requested using lock-S instruction.

 Lock requests are made to concurrency-control manager. Transaction 
can proceed only after request is granted.
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Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock 
is compatible with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item, 
 But if any transaction holds an exclusive on the item no other 

transaction may hold any lock on the item.
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Schedule With Lock Grants

 Grants omitted in rest of 
chapter
• Assume grant happens 

just before the next 
instruction following lock 
request

 This schedule is not 
serializable (why?)

 A  locking protocol is a 
set of rules followed by all 
transactions while 
requesting and releasing 
locks.

 Locking protocols enforce 
serializability by restricting 
the set of possible 
schedules.
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Deadlock

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing  lock-S(B) causes 
T4 to wait for T3 to release its lock on B, while executing  lock-X(A)
causes T3 to wait for T4 to release its lock on A.

 Such a situation is called a deadlock. 
• To handle a deadlock one of T3 or T4 must be rolled back 

and its locks released.
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Deadlock (Cont.)

 The potential for deadlock exists in most locking protocols. Deadlocks 
are a necessary evil.

 Starvation is also possible if concurrency control manager is badly 
designed. For example:
• A transaction may be waiting for an X-lock on an item, while a 

sequence of other transactions request and are granted an S-lock 
on the same item.  

• The same transaction is repeatedly rolled back due to deadlocks.
 Concurrency control manager can be designed to prevent starvation.
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The Two-Phase Locking Protocol

 A protocol which ensures conflict-serializable schedules.
 Phase 1: Growing Phase

• Transaction may obtain locks 
• Transaction may not release locks

 Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

 The protocol assures serializability. It can be proved that the 
transactions can be serialized in the order of their lock points (i.e., 
the point where a transaction acquired its final lock). 
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The Two-Phase Locking Protocol (Cont.)

 Two-phase locking does not ensure freedom from deadlocks
 Extensions to basic two-phase locking needed to ensure 

recoverability of freedom from cascading roll-back
• Strict two-phase locking: a transaction must hold all its exclusive locks 

till it commits/aborts.

 Ensures recoverability and avoids cascading roll-backs

• Rigorous two-phase locking: a transaction must hold all locks till 
commit/abort. 

 Transactions can be serialized in the order in which they commit.

 Most databases implement rigorous two-phase locking, but refer to it 
as simply two-phase locking
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The Two-Phase Locking Protocol (Cont.)

 Two-phase locking is not a necessary 
condition for serializability
• There are conflict serializable 

schedules that cannot be obtained if the 
two-phase locking protocol is used.  

 In the absence of extra information 
(e.g., ordering of  access to data), two-
phase locking is necessary for conflict 
serializability in the following sense:
• Given a transaction Ti that does not 

follow two-phase locking, we can 
find a transaction Tj that uses two-
phase locking, and a schedule for Ti
and Tj that is not conflict 
serializable.
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Locking Protocols

 Given a locking protocol (such as 2PL)
• A schedule S is legal under a locking protocol if it can be 

generated by a set of transactions that follow the protocol 
• A protocol ensures serializability if all legal schedules under that 

protocol are serializable



©Silberschatz, Korth and Sudarshan18.13Database System Concepts - 7th Edition

Lock Conversions

 Two-phase locking protocol with lock conversions:
– Growing Phase:        
• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

– Shrinking Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S  (downgrade)

 This protocol ensures serializability
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Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction, without 
explicit locking calls.

 The operation read(D) is processed as:
if Ti has a lock on D

then
read(D) 

else begin
if necessary wait until no other  

transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end
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Automatic Acquisition of Locks (Cont.)

 write(D) is processed as:
if Ti has a  lock-X on D

then
write(D)

else begin
if necessary wait until no other trans. has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

 All locks are released after commit or abort
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Implementation of Locking

 A lock manager can be implemented as a separate process 
 Transactions can send lock and unlock requests as messages
 The lock manager replies to a lock request by sending a lock grant 

messages (or a message asking the transaction to roll back, in case 
of  a deadlock)
• The requesting transaction waits until its request is answered

 The lock manager maintains an in-memory data-structure called a 
lock table to record granted locks and pending requests



©Silberschatz, Korth and Sudarshan18.17Database System Concepts - 7th Edition

Lock Table

 Dark rectangles indicate granted locks, 
light colored ones indicate waiting 
requests

 Lock table also records the type of lock 
granted or requested

 New request is added to the end of the 
queue of requests for the data item, and 
granted if it is compatible with all earlier 
locks

 Unlock requests result in the request 
being deleted, and later requests are 
checked to see if they can now be 
granted

 If transaction aborts, all waiting or 
granted requests of the transaction are 
deleted 
• lock manager may keep a list of 

locks held by each transaction, to 
implement this efficiently
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Graph-Based Protocols

 Graph-based protocols are an alternative to two-phase locking
 Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of all data 

items.
• If di → dj then any transaction accessing both di and dj must 

access di before accessing dj.
• Implies that the set D may now be viewed as a directed acyclic 

graph, called a database graph.
 The tree-protocol is a simple kind of graph protocol. 
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Tree Protocol

Tree protocol:
1. Only exclusive locks are allowed.
2. The first lock by Ti may be on any data item. Subsequently, a data Q

can be locked by Ti only if the parent of Q is currently locked by Ti.
3. Data items may be unlocked at any time.
4. A data item that has been locked and unlocked by Ti cannot 

subsequently be relocked by Ti
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Graph-Based Protocols (Cont.)

 The tree protocol ensures conflict serializability as well as freedom 
from deadlock.

 Unlocking may occur earlier in the tree-locking protocol than in the 
two-phase locking protocol.
• Shorter waiting times, and increase in concurrency
• Protocol is deadlock-free, no rollbacks are required

 Drawbacks
• Protocol does not guarantee recoverability or cascade freedom
 Need to introduce commit dependencies to ensure recoverability 

• Transactions may have to lock data items that they do not access.
 increased locking overhead, and additional waiting time
 potential decrease in concurrency

 Schedules not possible under two-phase locking are possible under 
the tree protocol, and vice versa.
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Deadlock Handling

 System is deadlocked if there is a set of transactions such that every 
transaction in the set is waiting for another transaction in the set.



©Silberschatz, Korth and Sudarshan18.22Database System Concepts - 7th Edition

Deadlock Handling

 Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies:
• Require that each transaction locks all its data items before it 

begins execution (pre-declaration).
• Impose partial ordering of all data items and require that a 

transaction can lock data items only in the order specified by the 
partial order (graph-based protocol).
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More Deadlock Prevention Strategies

 wait-die scheme — non-preemptive
• Older transaction may wait for younger one to release data item.
• Younger transactions never wait for older ones; they are rolled 

back instead.
• A transaction may die several times before acquiring a lock

 wound-wait scheme — preemptive
• Older transaction wounds (forces rollback) of younger transaction 

instead of waiting for it. 
• Younger transactions may wait for older ones.
• Fewer rollbacks than wait-die scheme.

 In both schemes, a rolled back transactions is restarted with its 
original timestamp. 
• Ensures that older transactions have precedence over newer 

ones, and starvation is thus avoided.
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Deadlock prevention (Cont.)

 Timeout-Based Schemes:
• A transaction waits for a lock only for a specified amount of time. 

After that, the wait times out and the transaction is rolled back.
• Ensures that deadlocks get resolved by timeout if they occur
• Simple to implement
• But may roll back transaction unnecessarily in absence of 

deadlock
 difficult to determine good value of the timeout interval.

• Starvation is also possible
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Deadlock Detection

 Wait-for graph
• Vertices: transactions
• Edge from Ti →Tj. : if Ti is waiting for a lock held in conflicting 

mode byTj

 The system is in a deadlock state if and only if the wait-for graph has 
a cycle.  

 Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph  with a cycle
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Deadlock Recovery

 When deadlock is  detected :
• Some transaction will have to rolled back (made a victim) to break 

deadlock cycle.  
 Select that transaction as victim that will incur minimum cost

• Rollback -- determine how far to roll back transaction
 Total rollback: Abort the transaction and then restart it.
 Partial rollback: Roll back victim transaction only as far as 

necessary to release locks that another transaction in cycle is 
waiting for

 Starvation can happen (why?)
• One solution: oldest transaction in the deadlock set is never 

chosen as victim
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Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data 
granularities, where the small granularities are nested within larger 
ones

 Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

 When a transaction locks a node in the tree explicitly, it implicitly locks 
all the node's descendents in the same mode.

 Granularity of locking (level in tree where locking is done):
• Fine granularity (lower in tree): high concurrency, high locking 

overhead
• Coarse granularity (higher in tree): low locking overhead, low 

concurrency
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Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are
• database
• area 
• file
• record
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Intention Lock Modes

 In addition to S and X lock modes, there are three additional lock 
modes with multiple granularity:
• intention-shared (IS): indicates explicit locking at a lower level of 

the tree but only with shared locks.
• intention-exclusive (IX): indicates explicit locking at a lower level 

with exclusive or shared locks
• shared and intention-exclusive (SIX): the subtree rooted by that 

node is locked explicitly in shared mode and explicit locking is 
being done at a lower level with exclusive-mode locks.

 intention locks allow a higher level node to be locked in S or X mode 
without having to check all descendent nodes.
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Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is: 
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TIMESTAMP BASED 
CONCURRENCY CONTROL
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Timestamp-Based Protocols

 Each transaction Ti is issued a timestamp TS(Ti) when it enters the 
system.

• Each transaction has a unique timestamp

• Newer transactions have timestamps strictly greater than earlier ones

• Timestamp could be based on a logical counter

 Real time may not be unique

 Can use (wall-clock time, logical counter) to ensure 

 Timestamp-based protocols manage concurrent execution such that 
time-stamp order = serializability order

 Several alternative protocols based on timestamps
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Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol
 Maintains for each data Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that 
executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that 
executed read(Q) successfully.

 Imposes rules on read and write operations to ensure that 
• any conflicting operations are executed in timestamp order
• out of order operations cause transaction rollback
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Timestamp-Based Protocols (Cont.)

 Suppose a transaction Ti issues a read(Q)
1. If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.
 Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, 
and R-timestamp(Q) is set to 

max(R-timestamp(Q), TS(Ti)).



©Silberschatz, Korth and Sudarshan18.42Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).
1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is 

producing was needed previously, and the system assumed that 
that value would never be produced. 
Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an 
obsolete value of Q. 
Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) 
is set to TS(Ti).
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Example of Schedule Under TSO

 And how about this one,
where initially

R-TS(Q)=W-TS(Q)=0

Assume that initially:
R-TS(A) = W-TS(A) = 0
R-TS(B) = W-TS(B) = 0

Assume TS(T25) = 25 and         
TS(T26) = 26

 Is this schedule valid under TSO?
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Another Example Under TSO

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5, with all R-TS and W-TS = 0 initially
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Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all 
the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph
 Timestamp protocol ensures freedom from deadlock as no transaction 

ever waits.  
 But the schedule may not be cascade-free, and may  not even be 

recoverable.
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Recoverability and Cascade Freedom

 Solution 1:
• A transaction is structured such that its writes are all performed at 

the end of its processing
• All writes of a transaction form an atomic action; no transaction 

may execute while a transaction is being written
• A transaction that aborts is restarted with a new timestamp

 Solution 2: Limited form of locking: wait for data to be committed 
before reading it

 Solution 3: Use commit dependencies to ensure recoverability
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Thomas’ Write Rule

 Modified version of the timestamp-ordering protocol in which obsolete 
write operations may be ignored under certain circumstances.

 When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q), 
then Ti is attempting to write an obsolete value of {Q}. 

• Rather than rolling back Ti as the timestamp ordering protocol 
would have done, this {write} operation can be ignored.

 Otherwise this protocol is the same as the timestamp ordering 
protocol.

 Thomas' Write Rule allows greater potential concurrency. 

• Allows some view-serializable schedules that are not conflict-
serializable.
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