
.

-

Concurrency Control

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan18.2Database System Concepts - 7th Edition

Outline

 Lock-Based Protocols
 Timestamp-Based Protocols

©Silberschatz, Korth and Sudarshan18.3Database System Concepts - 7th Edition

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item
 Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

 Lock requests are made to concurrency-control manager. Transaction
can proceed only after request is granted.

©Silberschatz, Korth and Sudarshan18.4Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item,
 But if any transaction holds an exclusive on the item no other

transaction may hold any lock on the item.

©Silberschatz, Korth and Sudarshan18.6Database System Concepts - 7th Edition

Schedule With Lock Grants

 Grants omitted in rest of
chapter
• Assume grant happens

just before the next
instruction following lock
request

 This schedule is not
serializable (why?)

 A locking protocol is a
set of rules followed by all
transactions while
requesting and releasing
locks.

 Locking protocols enforce
serializability by restricting
the set of possible
schedules.

©Silberschatz, Korth and Sudarshan18.7Database System Concepts - 7th Edition

Deadlock

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-S(B) causes
T4 to wait for T3 to release its lock on B, while executing lock-X(A)
causes T3 to wait for T4 to release its lock on A.

 Such a situation is called a deadlock.
• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

©Silberschatz, Korth and Sudarshan18.8Database System Concepts - 7th Edition

Deadlock (Cont.)

 The potential for deadlock exists in most locking protocols. Deadlocks
are a necessary evil.

 Starvation is also possible if concurrency control manager is badly
designed. For example:
• A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock
on the same item.

• The same transaction is repeatedly rolled back due to deadlocks.
 Concurrency control manager can be designed to prevent starvation.

©Silberschatz, Korth and Sudarshan18.9Database System Concepts - 7th Edition

The Two-Phase Locking Protocol

 A protocol which ensures conflict-serializable schedules.
 Phase 1: Growing Phase

• Transaction may obtain locks
• Transaction may not release locks

 Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

 The protocol assures serializability. It can be proved that the
transactions can be serialized in the order of their lock points (i.e.,
the point where a transaction acquired its final lock).

Time

Lo
ck

s

©Silberschatz, Korth and Sudarshan18.10Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking does not ensure freedom from deadlocks
 Extensions to basic two-phase locking needed to ensure

recoverability of freedom from cascading roll-back
• Strict two-phase locking: a transaction must hold all its exclusive locks

till it commits/aborts.

 Ensures recoverability and avoids cascading roll-backs

• Rigorous two-phase locking: a transaction must hold all locks till
commit/abort.

 Transactions can be serialized in the order in which they commit.

 Most databases implement rigorous two-phase locking, but refer to it
as simply two-phase locking

©Silberschatz, Korth and Sudarshan18.11Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking is not a necessary
condition for serializability
• There are conflict serializable

schedules that cannot be obtained if the
two-phase locking protocol is used.

 In the absence of extra information
(e.g., ordering of access to data), two-
phase locking is necessary for conflict
serializability in the following sense:
• Given a transaction Ti that does not

follow two-phase locking, we can
find a transaction Tj that uses two-
phase locking, and a schedule for Ti
and Tj that is not conflict
serializable.

©Silberschatz, Korth and Sudarshan18.12Database System Concepts - 7th Edition

Locking Protocols

 Given a locking protocol (such as 2PL)
• A schedule S is legal under a locking protocol if it can be

generated by a set of transactions that follow the protocol
• A protocol ensures serializability if all legal schedules under that

protocol are serializable

©Silberschatz, Korth and Sudarshan18.13Database System Concepts - 7th Edition

Lock Conversions

 Two-phase locking protocol with lock conversions:
– Growing Phase:
• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

– Shrinking Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

 This protocol ensures serializability

©Silberschatz, Korth and Sudarshan18.14Database System Concepts - 7th Edition

Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction, without
explicit locking calls.

 The operation read(D) is processed as:
if Ti has a lock on D

then
read(D)

else begin
if necessary wait until no other

transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end

©Silberschatz, Korth and Sudarshan18.15Database System Concepts - 7th Edition

Automatic Acquisition of Locks (Cont.)

 write(D) is processed as:
if Ti has a lock-X on D

then
write(D)

else begin
if necessary wait until no other trans. has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

 All locks are released after commit or abort

©Silberschatz, Korth and Sudarshan18.16Database System Concepts - 7th Edition

Implementation of Locking

 A lock manager can be implemented as a separate process
 Transactions can send lock and unlock requests as messages
 The lock manager replies to a lock request by sending a lock grant

messages (or a message asking the transaction to roll back, in case
of a deadlock)
• The requesting transaction waits until its request is answered

 The lock manager maintains an in-memory data-structure called a
lock table to record granted locks and pending requests

©Silberschatz, Korth and Sudarshan18.17Database System Concepts - 7th Edition

Lock Table

 Dark rectangles indicate granted locks,
light colored ones indicate waiting
requests

 Lock table also records the type of lock
granted or requested

 New request is added to the end of the
queue of requests for the data item, and
granted if it is compatible with all earlier
locks

 Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted

 If transaction aborts, all waiting or
granted requests of the transaction are
deleted
• lock manager may keep a list of

locks held by each transaction, to
implement this efficiently

©Silberschatz, Korth and Sudarshan18.18Database System Concepts - 7th Edition

Graph-Based Protocols

 Graph-based protocols are an alternative to two-phase locking
 Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of all data

items.
• If di → dj then any transaction accessing both di and dj must

access di before accessing dj.
• Implies that the set D may now be viewed as a directed acyclic

graph, called a database graph.
 The tree-protocol is a simple kind of graph protocol.

©Silberschatz, Korth and Sudarshan18.19Database System Concepts - 7th Edition

Tree Protocol

Tree protocol:
1. Only exclusive locks are allowed.
2. The first lock by Ti may be on any data item. Subsequently, a data Q

can be locked by Ti only if the parent of Q is currently locked by Ti.
3. Data items may be unlocked at any time.
4. A data item that has been locked and unlocked by Ti cannot

subsequently be relocked by Ti

©Silberschatz, Korth and Sudarshan18.20Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

 The tree protocol ensures conflict serializability as well as freedom
from deadlock.

 Unlocking may occur earlier in the tree-locking protocol than in the
two-phase locking protocol.
• Shorter waiting times, and increase in concurrency
• Protocol is deadlock-free, no rollbacks are required

 Drawbacks
• Protocol does not guarantee recoverability or cascade freedom
 Need to introduce commit dependencies to ensure recoverability

• Transactions may have to lock data items that they do not access.
 increased locking overhead, and additional waiting time
 potential decrease in concurrency

 Schedules not possible under two-phase locking are possible under
the tree protocol, and vice versa.

©Silberschatz, Korth and Sudarshan18.21Database System Concepts - 7th Edition

Deadlock Handling

 System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

©Silberschatz, Korth and Sudarshan18.22Database System Concepts - 7th Edition

Deadlock Handling

 Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies:
• Require that each transaction locks all its data items before it

begins execution (pre-declaration).
• Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

©Silberschatz, Korth and Sudarshan18.23Database System Concepts - 7th Edition

More Deadlock Prevention Strategies

 wait-die scheme — non-preemptive
• Older transaction may wait for younger one to release data item.
• Younger transactions never wait for older ones; they are rolled

back instead.
• A transaction may die several times before acquiring a lock

 wound-wait scheme — preemptive
• Older transaction wounds (forces rollback) of younger transaction

instead of waiting for it.
• Younger transactions may wait for older ones.
• Fewer rollbacks than wait-die scheme.

 In both schemes, a rolled back transactions is restarted with its
original timestamp.
• Ensures that older transactions have precedence over newer

ones, and starvation is thus avoided.

©Silberschatz, Korth and Sudarshan18.24Database System Concepts - 7th Edition

Deadlock prevention (Cont.)

 Timeout-Based Schemes:
• A transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.
• Ensures that deadlocks get resolved by timeout if they occur
• Simple to implement
• But may roll back transaction unnecessarily in absence of

deadlock
 difficult to determine good value of the timeout interval.

• Starvation is also possible

©Silberschatz, Korth and Sudarshan18.25Database System Concepts - 7th Edition

Deadlock Detection

 Wait-for graph
• Vertices: transactions
• Edge from Ti →Tj. : if Ti is waiting for a lock held in conflicting

mode byTj

 The system is in a deadlock state if and only if the wait-for graph has
a cycle.

 Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

©Silberschatz, Korth and Sudarshan18.26Database System Concepts - 7th Edition

Deadlock Recovery

 When deadlock is detected :
• Some transaction will have to rolled back (made a victim) to break

deadlock cycle.
 Select that transaction as victim that will incur minimum cost

• Rollback -- determine how far to roll back transaction
 Total rollback: Abort the transaction and then restart it.
 Partial rollback: Roll back victim transaction only as far as

necessary to release locks that another transaction in cycle is
waiting for

 Starvation can happen (why?)
• One solution: oldest transaction in the deadlock set is never

chosen as victim

©Silberschatz, Korth and Sudarshan18.27Database System Concepts - 7th Edition

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger
ones

 Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

 When a transaction locks a node in the tree explicitly, it implicitly locks
all the node's descendents in the same mode.

 Granularity of locking (level in tree where locking is done):
• Fine granularity (lower in tree): high concurrency, high locking

overhead
• Coarse granularity (higher in tree): low locking overhead, low

concurrency

©Silberschatz, Korth and Sudarshan18.28Database System Concepts - 7th Edition

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are
• database
• area
• file
• record

©Silberschatz, Korth and Sudarshan18.29Database System Concepts - 7th Edition

Intention Lock Modes

 In addition to S and X lock modes, there are three additional lock
modes with multiple granularity:
• intention-shared (IS): indicates explicit locking at a lower level of

the tree but only with shared locks.
• intention-exclusive (IX): indicates explicit locking at a lower level

with exclusive or shared locks
• shared and intention-exclusive (SIX): the subtree rooted by that

node is locked explicitly in shared mode and explicit locking is
being done at a lower level with exclusive-mode locks.

 intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes.

©Silberschatz, Korth and Sudarshan18.30Database System Concepts - 7th Edition

Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is:

©Silberschatz, Korth and Sudarshan18.38Database System Concepts - 7th Edition

TIMESTAMP BASED
CONCURRENCY CONTROL

©Silberschatz, Korth and Sudarshan18.39Database System Concepts - 7th Edition

Timestamp-Based Protocols

 Each transaction Ti is issued a timestamp TS(Ti) when it enters the
system.

• Each transaction has a unique timestamp

• Newer transactions have timestamps strictly greater than earlier ones

• Timestamp could be based on a logical counter

 Real time may not be unique

 Can use (wall-clock time, logical counter) to ensure

 Timestamp-based protocols manage concurrent execution such that
time-stamp order = serializability order

 Several alternative protocols based on timestamps

©Silberschatz, Korth and Sudarshan18.40Database System Concepts - 7th Edition

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol
 Maintains for each data Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

 Imposes rules on read and write operations to ensure that
• any conflicting operations are executed in timestamp order
• out of order operations cause transaction rollback

©Silberschatz, Korth and Sudarshan18.41Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose a transaction Ti issues a read(Q)
1. If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.
 Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to

max(R-timestamp(Q), TS(Ti)).

©Silberschatz, Korth and Sudarshan18.42Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).
1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is

producing was needed previously, and the system assumed that
that value would never be produced.
Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
obsolete value of Q.
Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q)
is set to TS(Ti).

©Silberschatz, Korth and Sudarshan18.43Database System Concepts - 7th Edition

Example of Schedule Under TSO

 And how about this one,
where initially

R-TS(Q)=W-TS(Q)=0

Assume that initially:
R-TS(A) = W-TS(A) = 0
R-TS(B) = W-TS(B) = 0

Assume TS(T25) = 25 and
TS(T26) = 26

 Is this schedule valid under TSO?

©Silberschatz, Korth and Sudarshan18.44Database System Concepts - 7th Edition

Another Example Under TSO

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5, with all R-TS and W-TS = 0 initially

©Silberschatz, Korth and Sudarshan18.45Database System Concepts - 7th Edition

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph
 Timestamp protocol ensures freedom from deadlock as no transaction

ever waits.
 But the schedule may not be cascade-free, and may not even be

recoverable.

©Silberschatz, Korth and Sudarshan18.46Database System Concepts - 7th Edition

Recoverability and Cascade Freedom

 Solution 1:
• A transaction is structured such that its writes are all performed at

the end of its processing
• All writes of a transaction form an atomic action; no transaction

may execute while a transaction is being written
• A transaction that aborts is restarted with a new timestamp

 Solution 2: Limited form of locking: wait for data to be committed
before reading it

 Solution 3: Use commit dependencies to ensure recoverability

©Silberschatz, Korth and Sudarshan18.47Database System Concepts - 7th Edition

Thomas’ Write Rule

 Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.

 When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q),
then Ti is attempting to write an obsolete value of {Q}.

• Rather than rolling back Ti as the timestamp ordering protocol
would have done, this {write} operation can be ignored.

 Otherwise this protocol is the same as the timestamp ordering
protocol.

 Thomas' Write Rule allows greater potential concurrency.

• Allows some view-serializable schedules that are not conflict-
serializable.

	Chapter 18 : Concurrency Control
	Outline
	Lock-Based Protocols
	Lock-Based Protocols (Cont.)
	Schedule With Lock Grants
	Deadlock
	Deadlock (Cont.)
	The Two-Phase Locking Protocol
	The Two-Phase Locking Protocol (Cont.)
	The Two-Phase Locking Protocol (Cont.)
	Locking Protocols
	Lock Conversions
	Automatic Acquisition of Locks
	Automatic Acquisition of Locks (Cont.)
	Implementation of Locking
	Lock Table
	Graph-Based Protocols
	Tree Protocol
	Graph-Based Protocols (Cont.)
	Deadlock Handling
	Deadlock Handling
	More Deadlock Prevention Strategies
	Deadlock prevention (Cont.)
	Deadlock Detection
	Deadlock Recovery
	Multiple Granularity
	Example of Granularity Hierarchy
	Intention Lock Modes
	Compatibility Matrix with Intention Lock Modes
	Timestamp Based Concurrency control
	Timestamp-Based Protocols
	Timestamp-Ordering Protocol
	Timestamp-Based Protocols (Cont.)
	Timestamp-Based Protocols (Cont.)
	Example of Schedule Under TSO
	Another Example Under TSO
	Correctness of Timestamp-Ordering Protocol
	Recoverability and Cascade Freedom
	Thomas’ Write Rule

