#### **Outline**

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

#### What Are Data Statistics?

Information about the tuples in a relation that can be used to estimate size & cost

» Example: # of tuples, average size of tuples, # distinct values for each attribute, % of null values for each attribute

Typically maintained by the storage engine as tuples are added & removed in a relation

» File formats like Parquet can also have them

#### Some Statistics We'll Use

For a relation R,

**T(R)** = # of tuples in R

**S(R)** = average size of R's tuples in bytes

**B(R)** = # of blocks to hold all of R's tuples

**V(R, A)** = # distinct values of attribute A in R

R:

| Α   | В | С  | Δ |
|-----|---|----|---|
| cat | 1 | 10 | а |
| cat | 1 | 20 | ۵ |
| dog | 1 | 30 | а |
| dog | 1 | 40 | C |
| bat | 1 | 50 | d |

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

R:

| Α   | В | O  | О |
|-----|---|----|---|
| cat | 1 | 10 | а |
| cat | 1 | 20 | р |
| dog | 1 | 30 | а |
| dog | 1 | 40 | С |
| bat | 1 | 50 | d |

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

$$T(R) = 5$$

$$V(R, A) = 3$$

$$V(R, B) = 1$$

$$S(R) = 37$$

$$V(R, C) = 5$$

$$V(R, D) = 4$$

#### **Challenge: Intermediate Tables**

Keeping stats for tables on disk is easy, but what about intermediate tables that appear during a query plan?

#### Examples:

```
\sigma_p(R) \leftarrow We already have T(R), S(R), V(R, a), etc, but how to get these for tuples that pass p?
```

Should we do (R  $\bowtie$  S)  $\bowtie$  T or R  $\bowtie$  (S  $\bowtie$  T) or (R  $\bowtie$  T)  $\bowtie$  S?

#### **Stat Estimation Methods**

Algorithms to estimate subplan stats

An ideal algorithm would have:

- 1) Accurate estimates of stats
- 2) Low cost
- 3) Consistent estimates (e.g. different plans for a subtree give same estimated stats)

Can't always get all this!

### Size Estimates for $W = R_1 \times R_2$

$$S(W) =$$

$$T(W) =$$

### Size Estimates for $W = R_1 \times R_2$

$$S(W) = S(R_1) + S(R_2)$$

$$T(W) = T(R_1) \times T(R_2)$$

### Size Estimate for $W = \sigma_{A=a}(R)$

$$S(W) =$$

$$T(W) =$$

### Size Estimate for $W = \sigma_{A=a}(R)$

$$T(W) =$$

R

| Α   | В  | С  | Δ |
|-----|----|----|---|
| cat | τ- | 10 | a |
| cat | τ- | 20 | р |
| dog | τ- | 30 | а |
| dog | 1  | 40 | С |
| bat | 1  | 50 | d |

$$V(R,A)=3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

$$W = \sigma_{Z=val}(R)$$
  $T(W) =$ 

R

| Α   | В | С  | D |
|-----|---|----|---|
| cat | 1 | 10 | а |
| cat | 1 | 20 | b |
| dog | 1 | 30 | а |
| dog | 1 | 40 | С |
| bat | 1 | 50 | d |

$$V(R,A)=3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

what is probability this tuple will be in answer?

$$W = \sigma_{Z=val}(R)$$
  $T(W) =$ 

R

| Α   | В  | С  | Δ |
|-----|----|----|---|
| cat | τ- | 10 | a |
| cat | τ- | 20 | р |
| dog | τ- | 30 | а |
| dog | 1  | 40 | С |
| bat | 1  | 50 | d |

$$V(R,A)=3$$

$$V(R,B)=1$$

$$V(R,C)=5$$

$$V(R,D)=4$$

$$W = \sigma_{Z=val}(R)$$

$$T(W) = \frac{T(R)}{V(R,Z)}$$

#### **Assumption:**

Values in select expression Z=val are uniformly distributed over all V(R, Z) values

#### **Alternate Assumption:**

Values in select expression Z=val are **uniformly distributed** over a domain with DOM(R, Z) values

R

| Α   | В | С  | D |
|-----|---|----|---|
| cat | 1 | 10 | a |
| cat | 1 | 20 | b |
| dog | 1 | 30 | a |
| dog | 1 | 40 | С |
| bat | 1 | 50 | d |

Alternate assumption

$$V(R,A)=3$$
,  $DOM(R,A)=10$ 

$$V(R,B)=1$$
,  $DOM(R,B)=10$ 

$$V(R,C)=5$$
,  $DOM(R,C)=10$ 

$$V(R,D)=4$$
,  $DOM(R,D)=10$ 

$$W = \sigma_{Z=val}(R)$$
  $T(W) =$ 

R

| Α   | В | С  | D |
|-----|---|----|---|
| cat | 1 | 10 | а |
| cat | 1 | 20 | b |
| dog | 1 | 30 | а |
| dog | 1 | 40 | С |
| bat | 1 | 50 | d |

Alternate assumption

$$V(R,A)=3$$
,  $DOM(R,A)=10$ 

$$V(R,B)=1$$
,  $DOM(R,B)=10$ 

$$V(R,C)=5$$
,  $DOM(R,C)=10$ 

$$V(R,D)=4$$
,  $DOM(R,D)=10$ 

what is probability this tuple will be in answer?

$$W = \sigma_{z=val}(R)$$
  $T(W) =$ 

 $\mathsf{R}$ 

| Α   | В | С  | D |
|-----|---|----|---|
| cat | 1 | 10 | а |
| cat | 1 | 20 | b |
| dog | 1 | 30 | а |
| dog | 1 | 40 | С |
| bat | 1 | 50 | d |

Alternate assumption

$$V(R,A)=3$$
,  $DOM(R,A)=10$ 

$$V(R,B)=1$$
,  $DOM(R,B)=10$ 

$$V(R,C)=5$$
,  $DOM(R,C)=10$ 

$$V(R,D)=4$$
,  $DOM(R,D)=10$ 

$$W = \sigma_{Z=val}(R)$$

$$T(W) = \frac{T(R)}{DOM(R,Z)}$$

#### **Selection Cardinality**

SC(R, A) = average # records that satisfy equality condition on R.A

$$SC(R,A) = \begin{cases} T(R) \\ \hline V(R,A) \end{cases}$$

$$T(R) \\ \hline T(R) \\ \hline DOM(R,A)$$

## What About W = $\sigma_{z \geq val}(R)$ ?

$$T(W) = ?$$

## What About W = $\sigma_{z \ge val}(R)$ ?

T(W) = ?

Solution 1: T(W) = T(R) / 2

## What About W = $\sigma_{z \ge val}(R)$ ?

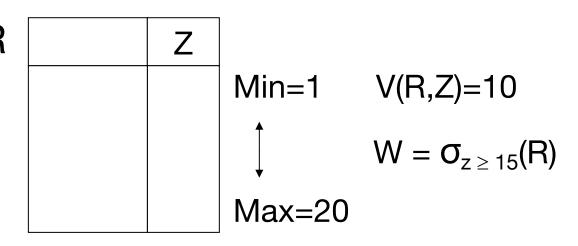
T(W) = ?

Solution 1: T(W) = T(R) / 2

Solution 2: T(W) = T(R) / 3

## Solution 3: Estimate Fraction of Values in Range

Example: R



$$f = 20-15+1 = 6$$
 (fraction of range)  
20-1+1 20

$$T(W) = f \times T(R)$$

## Solution 3: Estimate Fraction of Values in Range

Equivalently, if we know values in column:

f = fraction of distinct values ≥ val

$$T(W) = f \times T(R)$$

### Size Estimate for $W = R_1 \bowtie R_2$

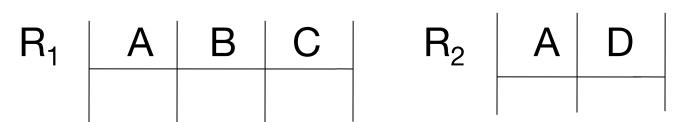
Let  $X = attributes of R_1$ 

 $Y = attributes of R_2$ 

Case 1:  $X \cap Y = \emptyset$ :

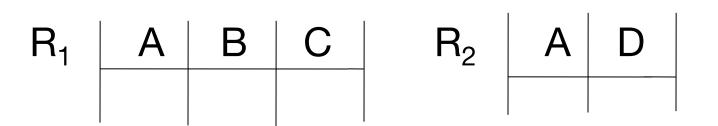
Same as R<sub>1</sub> x R<sub>2</sub>

#### Case 2: $W = R_1 \bowtie R_2$ , $X \cap Y = A$





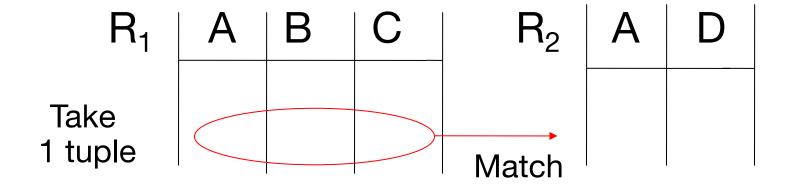
#### Case 2: $W = R_1 \bowtie R_2$ , $X \cap Y = A$



Assumption ("containment of value sets"):

 $V(R_1, A) \le V(R_2, A) \Rightarrow \text{Every A value in } R_1 \text{ is in } R_2$  $V(R_2, A) \le V(R_1, A) \Rightarrow \text{Every A value in } R_2 \text{ is in } R_1$ 

#### Computing T(W) when $V(R_1, A) \leq V(R_2, A)$



1 tuple matches with 
$$T(R_2)$$
 tuples...  $V(R_2, A)$ 

so 
$$T(W) = T(R_1) \times T(R_2)$$

$$V(R_2, A)$$

$$V(R_1, A) \le V(R_2, A) \Rightarrow T(W) = \frac{T(R_1) \times T(R_2)}{V(R_2, A)}$$

$$V(R_2, A) \le V(R_1, A) \Rightarrow T(W) = \frac{T(R_1) \times T(R_2)}{V(R_1, A)}$$

## In General for $W = R_1 \bowtie R_2$

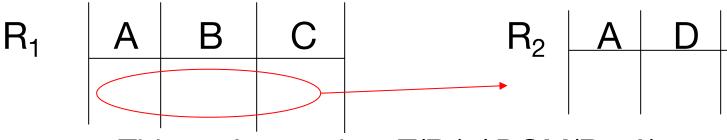
$$T(W) = T(R_1) \times T(R_2)$$

$$max(V(R_1, A), V(R_2, A))$$

Where A is the common attribute set

#### **Case 2 with Alternate Assumption**

Values uniformly distributed over domain



This tuple matches T(R<sub>2</sub>) / DOM(R<sub>2</sub>, A), so

$$T(W) = T(R_1) T(R_2) = T(R_1) T(R_2)$$

$$DOM(R_2, A) DOM(R_1, A)$$

#### **Tuple Size after Join**

In all cases:

$$S(W) = S(R_1) + S(R_2) - S(A)$$
  
size of attribute A

# Using Similar Ideas, Can Estimate Sizes of:

$$\Pi_{A,B}(R)$$

$$\sigma_{A=a\wedge B=b}(R)$$

R ⋈ S with common attributes A, B, C

Set union, intersection, difference, ...

## For Complex Expressions, Need Intermediate T, S, V Results

E.g. 
$$W = \sigma_{A=a}(R_1) \bowtie R_2$$

Treat as relation U

$$T(U) = T(R_1) / V(R_1, A)$$
  $S(U) = S(R_1)$ 

Also need V(U, \*)!!

#### To Estimate V

E.g., 
$$U = \sigma_{A=a}(R_1)$$

Say R<sub>1</sub> has attributes A, B, C, D

$$V(U, A) =$$

$$V(U, B) =$$

$$V(U, C) =$$

$$V(U, D) =$$

# Example

 $R_1$ 

| Α   | В | С  | D  |
|-----|---|----|----|
| cat | 1 | 10 | 10 |
| cat | 1 | 20 | 20 |
| dog | 1 | 30 | 10 |
| dog | 1 | 40 | 30 |
| bat | 1 | 50 | 10 |

$$V(R_1, A)=3$$

$$V(R_1, B)=1$$

$$V(R_1, C)=5$$

$$V(R_1, D)=3$$

$$U = \sigma_{A=a}(R_1)$$

## Example

R

| Α   | В | C  | D  |
|-----|---|----|----|
| cat | ~ | 10 | 10 |
| cat | ~ | 20 | 20 |
| dog | 1 | 30 | 10 |
| dog | 1 | 40 | 30 |
| bat | 1 | 50 | 10 |

$$V(R_1, A)=3$$

$$V(R_1, B)=1$$

$$V(R_1, C)=5$$

$$V(R_1, D)=3$$

$$U = \sigma_{A=a}(R_1)$$

$$V(U, A) = 1$$
  $V(U, B) = 1$   $V(U, C) = T(R1)$   $V(R1,A)$ 

V(U, D) = somewhere in between...

# Possible Guess in $U = \sigma_{A>a}(R)$

$$V(U, A) = V(R, A) / 2$$

$$V(U, B) = V(R, B)$$

## For Joins: $U = R_1(A,B) \bowtie R_2(A,C)$

We'll use the following estimates:

$$V(U, A) = min(V(R_1, A), V(R_2, A))$$

$$V(U, B) = V(R_1, B)$$

$$V(U, C) = V(R_2, C)$$

Called "preservation of value sets"

## **Example:**

$$Z = R_1(A,B) \bowtie R_2(B,C) \bowtie R_3(C,D)$$

 $R_1$ 

 $T(R_1) = 1000 V(R_1,A)=50 V(R_1,B)=100$ 

 $R_2$ 

 $T(R_2) = 2000 V(R_2,B)=200 V(R_2,C)=300$ 

 $R_3$ 

 $T(R_3) = 3000 V(R_3, C) = 90 V(R_3, D) = 500$ 

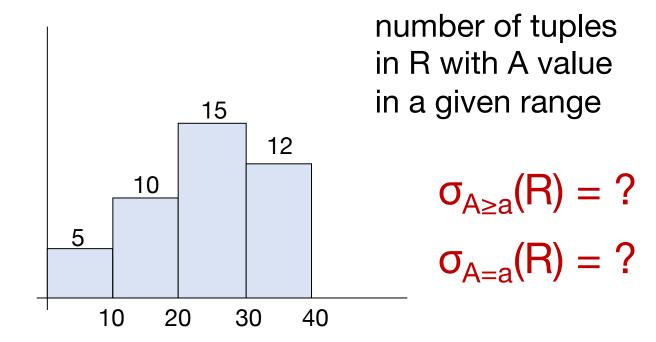
# Partial Result: $U = R_1 \bowtie R_2$

$$T(U) = 1000 \times 2000$$
  $V(U,A) = 50$   $V(U,B) = 100$   $V(U,C) = 300$ 

# End Result: $Z = U \bowtie R_3$

$$T(Z) = 1000 \times 2000 \times 3000$$
  $V(Z,A) = 50$   $V(Z,B) = 100$   $V(Z,C) = 90$   $V(Z,D) = 500$ 

## **Another Statistic: Histograms**



Requires some care to set bucket boundaries

## **Outline**

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

#### **Cost Models**

How do we measure a query plan's cost?

Many possible metrics:

- » Number of compute cycles
- » Combined time metric
- » Memory usage
- » Bytes sent on network
- **>>** ...

# Example: Index vs Table Scan

Our query:  $\sigma_p(R)$  for some predicate p

s = p's selectivity (fraction tuples passing)

Table scan:

block size

R has  $B(R) = T(R) \times S(R)/b$ blocks on disk

Cost: B(R) I/Os

Index search:

Index lookup for p takes L I/Os

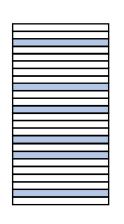
We then have to read part of R; Pr[read block i]

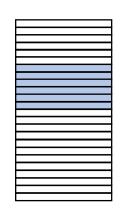
$$= 1 - (1-s)^{b / S(R)}$$

Cost: L +  $(1-(1-s)^{b/S(R)})$  B(R)

#### What If Results Were Clustered?

Unclustered: records that match p are spread out uniformly





Clustered: records that match p are close together in R's file

We'd need to change our estimate of C<sub>index</sub>:

$$C_{index} = L + s B(R)$$
Fraction of R's blocks read

Less than C<sub>index</sub> for unclustered data

# **Join Operators**

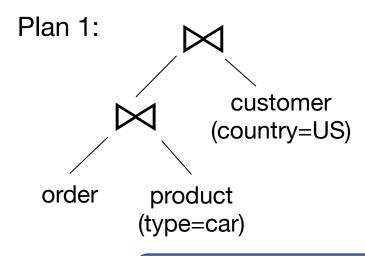
Join **orders** and **algorithms** are often the choices that affect performance the most

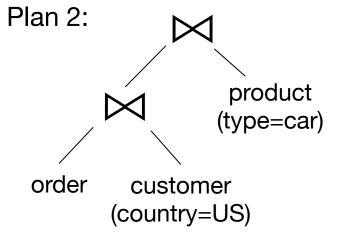
For a multi-way join R ⋈ S ⋈ T ⋈ ..., each join is selective, and order matters a lot » Try to eliminate lots of records early

Even for one join  $R \bowtie S$ , algorithm matters

# **Example**

```
SELECT order.date, product.price, customer.name
FROM order, product, customer
WHERE order.product_id = product.product_id
AND order.cust_id = customer.cust_id
AND product.type = "car"
AND customer.country = "US"
join conditions
selection predicates
```





# **Common Join Algorithms**

Iteration (nested loops) join

Merge join

Join with index

Hash join

## **Iteration Join**

```
for each r∈R₁:
  for each s∈R₂:
   if r.C == s.C then output (r, s)
```

I/Os: one scan of  $R_1$  and  $T(R_1)$  scans of  $R_2$ , so  $cost = B(R_1) + T(R_1) B(R_2)$  reads

Improvement: read M **blocks** of  $R_1$  in RAM at a time then read  $R_2$ :  $B(R_1) + B(R_1) B(R_2) / M$ 

Note: cost of writes is always  $B(R_1 \bowtie R_2)$ 

# Merge Join

```
if R_1 and R_2 not sorted by C then sort them i, j = 1 while i \leq T(R_1) && j \leq T(R_2): if R_1[i].C = R_2[j].C then outputTuples else if R_1[i].C > R_2[j].C then j += 1 else if R_1[i].C < R_2[j].C then i += 1
```

# **Query Optimization**

# Merge Join

```
procedure outputTuples: while R_1[i].C == R_2[j].C && i \leq T(R_1): jj = j while R_1[i].C == R_2[jj].C && jj \leq T(R_2): output (R_1[i], R_2[jj]) jj += 1 i += i+1
```

# **Example**

| <u>i</u> | R <sub>1</sub> [i].C | $R_2[j].C$ | j |
|----------|----------------------|------------|---|
| 1        | 10                   | 5          | 1 |
| 2        | 20                   | 20         | 2 |
| 3        | 20                   | 20         | 3 |
| 4        | 30                   | 30         | 4 |
| 5        | 40                   | 30         | 5 |
|          |                      | 50         | 6 |
|          |                      | 52         | 7 |

# **Cost of Merge Join**

If R<sub>1</sub> and R<sub>2</sub> already sorted by C, then

$$cost = B(R_1) + B(R_2)$$
 reads

(+ write cost of B( $R_1 \bowtie R_2$ ))

# **Cost of Merge Join**

If R<sub>i</sub> is not sorted, can sort it in 4 B(R<sub>i</sub>) I/Os:

- » Read runs of tuples into memory, sort
- » Write each sorted run to disk
- » Read from all sorted runs to merge
- » Write out results

## Join with Index

```
for each r \in R_1:
list = index_lookup(R_2, C, r.C)
for each s \in list:
output (r, s)
```

Read I/Os: 1 scan of  $R_1$ ,  $T(R_1)$  index lookups on  $R_2$ , and  $T(R_1)$  data lookups

$$cost = B(R_1) + T(R_1) (L_{index} + L_{data})$$

Can be less when R₁ is sorted/clustered by C!

# Hash Join (R<sub>2</sub> Fits in RAM)

```
hash = load R₂ into RAM and hash by C
for each r∈R₁:
  list = hash_lookup(hash, r.C)
  for each s∈list:
   output (r, s)
```

Read I/Os:  $B(R_1) + B(R_2)$ 

## Hash Join on Disk

Can be done by hashing both tables to a common set of buckets on disk

» Similar to merge sort:  $4 (B(R_1) + B(R_2))$ 

Trick: hash only (key, pointer to record) pairs

» Can then sort the pointers to records that match and fetch them near-sequentially

#### **Other Concerns**

Join selectivity may affect how many records we need to fetch from each relation

» If very selective, may prefer methods that join pointers or do index lookups

## **Summary**

Join algorithms can have different performance in different situations

In general, the following are used:

- » Index join if an index exists
- » Merge join if at least one table is sorted
- » Hash join if both tables unsorted

## **Outline**

What can we optimize?

Rule-based optimization

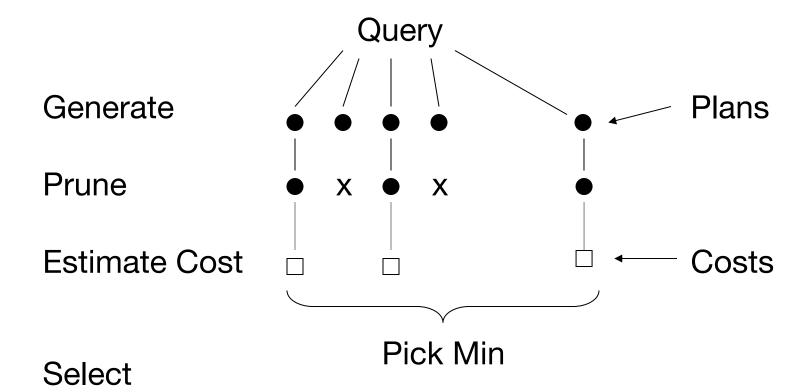
Data statistics

Cost models

Cost-based plan selection

## **Complete CBO Process**

Generate and compare possible query plans



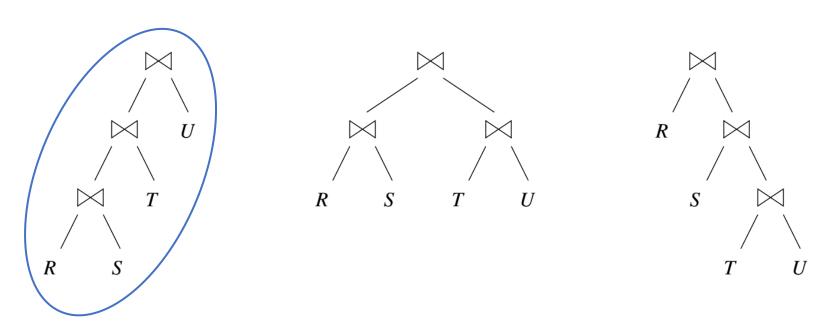
## **How to Generate Plans?**

Simplest way: recursive search of the options for each planning choice

```
Access paths for table 1 × Access paths for join 1 × Algorithms for join 2 × Algorithms
```

## **How to Generate Plans?**

Can limit search space: e.g. many DBMSes only consider "left-deep" joins



Often interacts well with conventions for specifying join inputs in asymmetric join algorithms (e.g. assume right argument has index)

#### **How to Generate Plans?**

Can prioritize searching through the most impactful decisions first

» E.g. join order is one of the most impactful

#### **How to Prune Plans?**

While computing the cost of a plan, throw it away if it is worse than best so far

Start with a **greedy algorithm** to find an "OK" initial plan that will allow lots of pruning

# Memoization and Dynamic Programming

During a search through plans, many subplans will appear repeatedly

Remember cost estimates and statistics (T(R), V(R, A), etc) for those: "memoization"

Can pick an order of subproblems to make it easy to reuse results (dynamic programming)

## **Resource Cost of CBO**

It's possible for cost-based optimization itself to take longer than running the query!

Need to design optimizer to not take too long

» That's why we have shortcuts in stats, etc

Luckily, a few "big" decisions drive most of the query execution time (e.g. join order)