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What Are Data Statistics?

Information about the tuples in a relation that 
can be used to estimate size & cost
» Example: # of tuples, average size of tuples, 

# distinct values for each attribute, % of null 
values for each attribute

Typically maintained by the storage engine 
as tuples are added & removed in a relation
» File formats like Parquet can also have them
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Some Statistics We’ll Use

For a relation R,

T(R) = # of tuples in R

S(R) = average size of R’s tuples in bytes

B(R) = # of blocks to hold all of R’s tuples

V(R, A) = # distinct values of attribute A in R
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Example
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R: A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d



Example
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T(R) = 5     S(R) = 37
V(R, A) = 3 V(R, C) = 5
V(R, B) = 1 V(R, D) = 4

R: A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d



Challenge: Intermediate Tables

Keeping stats for tables on disk is easy, but 
what about intermediate tables that appear 
during a query plan?

Examples:

σp(R)

R ⨝ S
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We already have T(R), S(R), V(R, a), etc,
but how to get these for tuples that pass p?

How many and what types of tuple pass
the join condition?

Should we do (R ⨝ S) ⨝ T or R ⨝ (S ⨝ T) or (R ⨝ T) ⨝ S? 



Stat Estimation Methods

Algorithms to estimate subplan stats

An ideal algorithm would have:
1) Accurate estimates of stats
2) Low cost
3) Consistent estimates (e.g. different plans 

for a subtree give same estimated stats)

Can’t always get all this!
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Size Estimates for W = R1⨯R2

S(W) =

T(W) =
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Size Estimates for W = R1⨯R2

S(W) =

T(W) =
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S(R1) + S(R2)

T(R1) ´ T(R2)



Size Estimate for W = σA=a(R)

S(W) =

T(W) = 
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Size Estimate for W = σA=a(R)

S(W) = S(R)

T(W) = 
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Not true if some variable-length fields
are correlated with value of A



Example
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R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R)        T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d



Example
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R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R)        T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d what is probability this

tuple will be in answer?



Example
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R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R)        T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
V(R,Z)



Assumption:

Values in select expression Z=val are 
uniformly distributed over all V(R, Z) values
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Alternate Assumption:

Values in select expression Z=val are 
uniformly distributed over a domain with 
DOM(R, Z) values
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Example
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R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R)        T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Alternate assumption



Example
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R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R)        T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Alternate assumption

what is probability this
tuple will be in answer?



Example
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R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R)        T(W) = 

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
DOM(R,Z)

Alternate assumption



SC(R, A) = average # records that satisfy
equality condition on R.A

T(R)
V(R,A)

SC(R,A) =
T(R)

DOM(R,A)
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Selection Cardinality



What About W = σz ³ val(R)?

T(W) = ?
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What About W = σz ³ val(R)?

T(W) = ?

Solution 1: T(W) = T(R) / 2
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What About W = σz ³ val(R)?

T(W) = ?

Solution 1: T(W) = T(R) / 2

Solution 2: T(W) = T(R) / 3
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Solution 3: Estimate Fraction of 
Values in Range

Example:   R
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Z
Min=1      V(R,Z)=10

W = σz ³ 15(R)

Max=20

f = 20-15+1 = 6 (fraction of range)
20-1+1     20

T(W) = f ´ T(R)



Equivalently, if we know values in column:

f = fraction of distinct values ≥ val

T(W)  = f ´ T(R)

CS 245 58

Solution 3: Estimate Fraction of 
Values in Range



Size Estimate for W = R1 ⨝ R2

Let X = attributes of R1

Y = attributes of R2
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Case 1: X ∩ Y = ∅:

Same as R1 x R2



R1   A     B     C     R2 A D
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Case 2: W = R1 ⨝ R2, X ∩ Y = A



R1   A     B     C     R2 A D
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Case 2: W = R1 ⨝ R2, X ∩ Y = A

Assumption (“containment of value sets”):
V(R1, A)  £ V(R2, A)  Þ Every A value in R1 is in R2

V(R2, A)  £ V(R1, A)  Þ Every A value in R2 is in R1



R1 A    B     C     R2 A D

Take 
1 tuple Match

Computing T(W) when
V(R1, A) £ V(R2, A)
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1 tuple matches with    T(R2)    tuples...
V(R2, A) 

so T(W)  =  T(R1) ´ T(R2)
V(R2, A) 
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V(R1, A) £ V(R2, A)  ⇒ T(W) =  T(R1) ´ T(R2)
V(R2, A) 

V(R2, A) £ V(R1, A)  ⇒ T(W) =  T(R1) ´ T(R2)
V(R1, A) 



T(W)  =          T(R1) ⨯ T(R2)

max(V(R1, A), V(R2, A))

CS 245 66

In General for W = R1 ⨝ R2

Where A is the common attribute set



Values uniformly distributed over domain

R1 A B C R2 A     D

This tuple matches T(R2) / DOM(R2, A), so

T(W) =  T(R1) T(R2)   =  T(R1) T(R2) 
DOM(R2, A)    DOM(R1, A) 

Assume these are the sameCS 245 67

Case 2 with Alternate Assumption



Tuple Size after Join

In all cases: 

S(W) = S(R1) + S(R2) – S(A)

size of attribute A
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PA,B(R)

σA=aÙB=b(R) 

R ⨝ S  with common attributes A, B, C

Set union, intersection, difference, …
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Using Similar Ideas, Can 
Estimate Sizes of:



E.g.  W =  σA=a(R1)  ⨝ R2

Treat as relation U

T(U) = T(R1) / V(R1, A)      S(U) = S(R1)

Also need V(U, *) !! 
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For Complex Expressions, Need 
Intermediate T, S, V Results



To Estimate V

E.g., U = σA=a(R1)

Say R1 has attributes A, B, C, D

V(U, A) =

V(U, B) =

V(U, C) =

V(U, D) =
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R1 V(R1, A)=3
V(R1, B)=1
V(R1, C)=5
V(R1, D)=3

U = σA=a(R1)

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10
dog 1 40 30
bat 1 50 10
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Example



R1 V(R1, A)=3
V(R1, B)=1
V(R1, C)=5
V(R1, D)=3

U = σA=a(R1)

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10
dog 1 40 30
bat 1 50 10
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Example

V(U, A) = 1     V(U, B) = 1      V(U, C) =   T(R1)
V(R1,A)

V(U, D) = somewhere in between…



V(U, A) = V(R, A) / 2

V(U, B) = V(R, B)
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Possible Guess in U = σA≥a(R)



For Joins: U = R1(A,B) ⨝ R2(A,C) 

We’ll use the following estimates:

V(U, A) = min(V(R1, A), V(R2, A))

V(U, B) = V(R1, B)

V(U, C) = V(R2, C)

Called “preservation of value sets”
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Example:

Z = R1(A,B) ⨝ R2(B,C) ⨝ R3(C,D)

T(R1) = 1000  V(R1,A)=50   V(R1,B)=100

T(R2) = 2000  V(R2,B)=200 V(R2,C)=300

T(R3) = 3000  V(R3,C)=90   V(R3,D)=500

R1

R2

R3

CS 245 76



T(U) = 1000´2000       V(U,A) = 50
200 V(U,B) = 100

V(U,C) = 300

Partial Result: U = R1 ⨝ R2
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End Result: Z = U ⨝ R3

T(Z) = 1000´2000´3000 V(Z,A) = 50
200´300 V(Z,B) = 100

V(Z,C) = 90
V(Z,D) = 500
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Another Statistic: Histograms

CS 245 79

10 20 30 40

5

10

15
12

number of tuples
in R with A value
in a given range

σA=a(R) = ?

Requires some care to set bucket boundaries

σA≥a(R) = ?



Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection
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Cost Models

How do we measure a query plan’s cost?

Many possible metrics:
» Number of disk I/Os
» Number of compute cycles
» Combined time metric
» Memory usage
» Bytes sent on network
» …
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We’ll focus on this



Example: Index vs Table Scan

Our query: σp(R) for some predicate p

s = p’s selectivity (fraction tuples passing)
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Table scan:
R has B(R) = T(R)⨯S(R)/b
blocks on disk

Cost: B(R) I/Os

Index search:
Index lookup for p takes L I/Os

We then have to read part of R;
Pr[read block i]

≈ 1 – Pr[no match]records in block

= 1 – (1–s)b / S(R)

Cost: L + (1–(1–s)b/S(R)) B(R)

block size



What If Results Were Clustered?

We’d need to change our estimate of Cindex:

Cindex = L + s B(R)
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Unclustered: 
records that 
match p are
spread out 
uniformly

Clustered: 
records that 
match p are
close together 
in R’s file

Fraction of R’s blocks read

Less than Cindex for 
unclustered data



Join Operators

Join orders and algorithms are often the 
choices that affect performance the most

For a multi-way join R ⨝ S ⨝ T ⨝ …, each 
join is selective, and order matters a lot
» Try to eliminate lots of records early

Even for one join R ⨝ S, algorithm matters
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Example
SELECT order.date, product.price, customer.name
FROM order, product, customer
WHERE order.product_id = product.product_id
AND order.cust_id = customer.cust_id
AND product.type = “car”
AND customer.country = “US”
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⨝
order product

(type=car)

customer
(country=US)

⨝

⨝
order customer

(country=US)

product
(type=car)

⨝Plan 1: Plan 2:

join conditions

selection predicates

When is each plan better?



Common Join Algorithms

Iteration (nested loops) join

Merge join

Join with index

Hash join
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Iteration Join
for each rÎR1:

for each sÎR2:
if r.C == s.C then output (r, s)

I/Os: one scan of R1 and T(R1) scans of R2, so 
cost = B(R1) + T(R1) B(R2) reads

Improvement: read M blocks of R1 in RAM at 
a time then read R2: B(R1) + B(R1) B(R2) / M
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Note: cost of writes is always B(R1 ⨝ R2)



Merge Join

if R1 and R2 not sorted by C then sort them
i, j = 1
while i £ T(R1) && j £ T(R2):

if R1[i].C = R2[j].C then outputTuples
else if R1[i].C > R2[j].C then j += 1
else if R1[i].C < R2[j].C then i += 1
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Query Optimization
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Merge Join

procedure outputTuples:
while R1[i].C == R2[j].C && i £ T(R1):

jj = j
while R1[i].C == R2[jj].C && jj £ T(R2):

output (R1[i], R2[jj]) 
jj += 1

i += i+1
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i R1[i].C R2[j].C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5

50 6
52 7

Example
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Cost of Merge Join

If R1 and R2 already sorted by C, then

cost = B(R1) + B(R2) reads
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(+ write cost of B(R1 ⨝ R2))



Cost of Merge Join

If Ri is not sorted, can sort it in 4 B(Ri) I/Os:
» Read runs of tuples into memory, sort
» Write each sorted run to disk
» Read from all sorted runs to merge
» Write out results
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Join with Index
for each rÎR1:

list = index_lookup(R2, C, r.C)
for each sÎlist:

output (r, s)

Read I/Os: 1 scan of R1, T(R1) index lookups 
on R2, and T(R1) data lookups

cost = B(R1) + T(R1) (Lindex + Ldata)
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Can be less when R1 is sorted/clustered by C!



Hash Join (R2 Fits in RAM)
hash = load R2 into RAM and hash by C
for each rÎR1:

list = hash_lookup(hash, r.C)
for each sÎlist:

output (r, s)

Read I/Os: B(R1) + B(R2)
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Hash Join on Disk 

Can be done by hashing both tables to a 
common set of buckets on disk
» Similar to merge sort: 4 (B(R1) + B(R2))

Trick: hash only (key, pointer to record) pairs
» Can then sort the pointers to records that 

match and fetch them near-sequentially
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Other Concerns

Join selectivity may affect how many records 
we need to fetch from each relation
» If very selective, may prefer methods that 

join pointers or do index lookups
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Summary

Join algorithms can have different 
performance in different situations

In general, the following are used:
» Index join if an index exists
» Merge join if at least one table is sorted
» Hash join if both tables unsorted
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Complete CBO Process

Generate and compare possible query plans

Query

Generate Plans

Prune x         x

Estimate Cost Costs

Select
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Pick Min



How to Generate Plans?

Simplest way: recursive search of the 
options for each planning choice
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Access paths
for table 1

Access paths
for table 2

Algorithms
for join 1

Algorithms
for join 2⨯ ⨯ ⨯ ⨯ …



How to Generate Plans?

Can limit search space: e.g. many DBMSes
only consider “left-deep” joins
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Often interacts well with conventions for specifying join inputs in 
asymmetric join algorithms (e.g. assume right argument has index)



How to Generate Plans?

Can prioritize searching through the most 
impactful decisions first
» E.g. join order is one of the most impactful
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How to Prune Plans?

While computing the cost of a plan, throw it 
away if it is worse than best so far

Start with a greedy algorithm to find an 
“OK” initial plan that will allow lots of pruning
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Memoization and Dynamic 
Programming
During a search through plans, many 
subplans will appear repeatedly

Remember cost estimates and statistics 
(T(R), V(R, A), etc) for those: “memoization”

Can pick an order of subproblems to make it 
easy to reuse results (dynamic programming)
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Resource Cost of CBO

It’s possible for cost-based optimization 
itself to take longer than running the query!

Need to design optimizer to not take too 
long
» That’s why we have shortcuts in stats, etc

Luckily, a few “big” decisions drive most of 
the query execution time (e.g. join order)
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