
Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

CS 245 34

What Are Data Statistics?

Information about the tuples in a relation that
can be used to estimate size & cost
» Example: # of tuples, average size of tuples,

distinct values for each attribute, % of null
values for each attribute

Typically maintained by the storage engine
as tuples are added & removed in a relation
» File formats like Parquet can also have them

CS 245 35

Some Statistics We’ll Use

For a relation R,

T(R) = # of tuples in R

S(R) = average size of R’s tuples in bytes

B(R) = # of blocks to hold all of R’s tuples

V(R, A) = # distinct values of attribute A in R

CS 245 36

Example

CS 245 37

R: A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Example

CS 245 38

T(R) = 5 S(R) = 37
V(R, A) = 3 V(R, C) = 5
V(R, B) = 1 V(R, D) = 4

R: A: 20 byte string
B: 4 byte integer
C: 8 byte date
D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Challenge: Intermediate Tables

Keeping stats for tables on disk is easy, but
what about intermediate tables that appear
during a query plan?

Examples:

σp(R)

R ⨝ S

CS 245 39

We already have T(R), S(R), V(R, a), etc,
but how to get these for tuples that pass p?

How many and what types of tuple pass
the join condition?

Should we do (R ⨝ S) ⨝ T or R ⨝ (S ⨝ T) or (R ⨝ T) ⨝ S?

Stat Estimation Methods

Algorithms to estimate subplan stats

An ideal algorithm would have:
1) Accurate estimates of stats
2) Low cost
3) Consistent estimates (e.g. different plans

for a subtree give same estimated stats)

Can’t always get all this!

CS 245 40

Size Estimates for W = R1⨯R2

S(W) =

T(W) =

CS 245 41

Size Estimates for W = R1⨯R2

S(W) =

T(W) =

CS 245 42

S(R1) + S(R2)

T(R1) ´ T(R2)

Size Estimate for W = σA=a(R)

S(W) =

T(W) =

CS 245 43

Size Estimate for W = σA=a(R)

S(W) = S(R)

T(W) =

CS 245 44

Not true if some variable-length fields
are correlated with value of A

Example

CS 245 45

R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Example

CS 245 46

R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d what is probability this

tuple will be in answer?

Example

CS 245 47

R V(R,A)=3
V(R,B)=1
V(R,C)=5
V(R,D)=4

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
V(R,Z)

Assumption:

Values in select expression Z=val are
uniformly distributed over all V(R, Z) values

CS 245 48

Alternate Assumption:

Values in select expression Z=val are
uniformly distributed over a domain with
DOM(R, Z) values

CS 245 49

Example

CS 245 50

R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Alternate assumption

Example

CS 245 51

R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

Alternate assumption

what is probability this
tuple will be in answer?

Example

CS 245 52

R V(R,A)=3, DOM(R,A)=10
V(R,B)=1, DOM(R,B)=10
V(R,C)=5, DOM(R,C)=10
V(R,D)=4, DOM(R,D)=10

W = σZ=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
DOM(R,Z)

Alternate assumption

SC(R, A) = average # records that satisfy
equality condition on R.A

T(R)
V(R,A)

SC(R,A) =
T(R)

DOM(R,A)
CS 245 53

Selection Cardinality

What About W = σz ³ val(R)?

T(W) = ?

CS 245 54

What About W = σz ³ val(R)?

T(W) = ?

Solution 1: T(W) = T(R) / 2

CS 245 55

What About W = σz ³ val(R)?

T(W) = ?

Solution 1: T(W) = T(R) / 2

Solution 2: T(W) = T(R) / 3

CS 245 56

Solution 3: Estimate Fraction of
Values in Range

Example: R

CS 245 57

Z
Min=1 V(R,Z)=10

W = σz ³ 15(R)

Max=20

f = 20-15+1 = 6 (fraction of range)
20-1+1 20

T(W) = f ´ T(R)

Equivalently, if we know values in column:

f = fraction of distinct values ≥ val

T(W) = f ´ T(R)

CS 245 58

Solution 3: Estimate Fraction of
Values in Range

Size Estimate for W = R1 ⨝ R2

Let X = attributes of R1

Y = attributes of R2

CS 245 61

Case 1: X ∩ Y = ∅:

Same as R1 x R2

R1 A B C R2 A D

CS 245 62

Case 2: W = R1 ⨝ R2, X ∩ Y = A

R1 A B C R2 A D

CS 245 63

Case 2: W = R1 ⨝ R2, X ∩ Y = A

Assumption (“containment of value sets”):
V(R1, A) £ V(R2, A) Þ Every A value in R1 is in R2

V(R2, A) £ V(R1, A) Þ Every A value in R2 is in R1

R1 A B C R2 A D

Take
1 tuple Match

Computing T(W) when
V(R1, A) £ V(R2, A)

CS 245 64

1 tuple matches with T(R2) tuples...
V(R2, A)

so T(W) = T(R1) ´ T(R2)
V(R2, A)

CS 245 65

V(R1, A) £ V(R2, A) ⇒ T(W) = T(R1) ´ T(R2)
V(R2, A)

V(R2, A) £ V(R1, A) ⇒ T(W) = T(R1) ´ T(R2)
V(R1, A)

T(W) = T(R1) ⨯ T(R2)

max(V(R1, A), V(R2, A))

CS 245 66

In General for W = R1 ⨝ R2

Where A is the common attribute set

Values uniformly distributed over domain

R1 A B C R2 A D

This tuple matches T(R2) / DOM(R2, A), so

T(W) = T(R1) T(R2) = T(R1) T(R2)
DOM(R2, A) DOM(R1, A)

Assume these are the sameCS 245 67

Case 2 with Alternate Assumption

Tuple Size after Join

In all cases:

S(W) = S(R1) + S(R2) – S(A)

size of attribute A

CS 245 68

PA,B(R)

σA=aÙB=b(R)

R ⨝ S with common attributes A, B, C

Set union, intersection, difference, …

CS 245 69

Using Similar Ideas, Can
Estimate Sizes of:

E.g. W = σA=a(R1) ⨝ R2

Treat as relation U

T(U) = T(R1) / V(R1, A) S(U) = S(R1)

Also need V(U, *) !!

CS 245 70

For Complex Expressions, Need
Intermediate T, S, V Results

To Estimate V

E.g., U = σA=a(R1)

Say R1 has attributes A, B, C, D

V(U, A) =

V(U, B) =

V(U, C) =

V(U, D) =

CS 245 71

R1 V(R1, A)=3
V(R1, B)=1
V(R1, C)=5
V(R1, D)=3

U = σA=a(R1)

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10
dog 1 40 30
bat 1 50 10

CS 245 72

Example

R1 V(R1, A)=3
V(R1, B)=1
V(R1, C)=5
V(R1, D)=3

U = σA=a(R1)

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10
dog 1 40 30
bat 1 50 10

CS 245 73

Example

V(U, A) = 1 V(U, B) = 1 V(U, C) = T(R1)
V(R1,A)

V(U, D) = somewhere in between…

V(U, A) = V(R, A) / 2

V(U, B) = V(R, B)

CS 245 74

Possible Guess in U = σA≥a(R)

For Joins: U = R1(A,B) ⨝ R2(A,C)

We’ll use the following estimates:

V(U, A) = min(V(R1, A), V(R2, A))

V(U, B) = V(R1, B)

V(U, C) = V(R2, C)

Called “preservation of value sets”
CS 245 75

Example:

Z = R1(A,B) ⨝ R2(B,C) ⨝ R3(C,D)

T(R1) = 1000 V(R1,A)=50 V(R1,B)=100

T(R2) = 2000 V(R2,B)=200 V(R2,C)=300

T(R3) = 3000 V(R3,C)=90 V(R3,D)=500

R1

R2

R3

CS 245 76

T(U) = 1000´2000 V(U,A) = 50
200 V(U,B) = 100

V(U,C) = 300

Partial Result: U = R1 ⨝ R2

CS 245 77

End Result: Z = U ⨝ R3

T(Z) = 1000´2000´3000 V(Z,A) = 50
200´300 V(Z,B) = 100

V(Z,C) = 90
V(Z,D) = 500

CS 245 78

Another Statistic: Histograms

CS 245 79

10 20 30 40

5

10

15
12

number of tuples
in R with A value
in a given range

σA=a(R) = ?

Requires some care to set bucket boundaries

σA≥a(R) = ?

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

CS 245 80

Cost Models

How do we measure a query plan’s cost?

Many possible metrics:
» Number of disk I/Os
» Number of compute cycles
» Combined time metric
» Memory usage
» Bytes sent on network
» …

CS 245 6

We’ll focus on this

Example: Index vs Table Scan

Our query: σp(R) for some predicate p

s = p’s selectivity (fraction tuples passing)

CS 245 7

Table scan:
R has B(R) = T(R)⨯S(R)/b
blocks on disk

Cost: B(R) I/Os

Index search:
Index lookup for p takes L I/Os

We then have to read part of R;
Pr[read block i]

≈ 1 – Pr[no match]records in block

= 1 – (1–s)b / S(R)

Cost: L + (1–(1–s)b/S(R)) B(R)

block size

What If Results Were Clustered?

We’d need to change our estimate of Cindex:

Cindex = L + s B(R)

CS 245 8

Unclustered:
records that
match p are
spread out
uniformly

Clustered:
records that
match p are
close together
in R’s file

Fraction of R’s blocks read

Less than Cindex for
unclustered data

Join Operators

Join orders and algorithms are often the
choices that affect performance the most

For a multi-way join R ⨝ S ⨝ T ⨝ …, each
join is selective, and order matters a lot
» Try to eliminate lots of records early

Even for one join R ⨝ S, algorithm matters

CS 245 9

Example
SELECT order.date, product.price, customer.name
FROM order, product, customer
WHERE order.product_id = product.product_id
AND order.cust_id = customer.cust_id
AND product.type = “car”
AND customer.country = “US”

CS 245 10

⨝
order product

(type=car)

customer
(country=US)

⨝

⨝
order customer

(country=US)

product
(type=car)

⨝Plan 1: Plan 2:

join conditions

selection predicates

When is each plan better?

Common Join Algorithms

Iteration (nested loops) join

Merge join

Join with index

Hash join

CS 245 11

Iteration Join
for each rÎR1:

for each sÎR2:
if r.C == s.C then output (r, s)

I/Os: one scan of R1 and T(R1) scans of R2, so
cost = B(R1) + T(R1) B(R2) reads

Improvement: read M blocks of R1 in RAM at
a time then read R2: B(R1) + B(R1) B(R2) / M

CS 245 12

Note: cost of writes is always B(R1 ⨝ R2)

Merge Join

if R1 and R2 not sorted by C then sort them
i, j = 1
while i £ T(R1) && j £ T(R2):

if R1[i].C = R2[j].C then outputTuples
else if R1[i].C > R2[j].C then j += 1
else if R1[i].C < R2[j].C then i += 1

CS 245 13

Query Optimization

CS 245 14

Merge Join

procedure outputTuples:
while R1[i].C == R2[j].C && i £ T(R1):

jj = j
while R1[i].C == R2[jj].C && jj £ T(R2):

output (R1[i], R2[jj])
jj += 1

i += i+1

CS 245 14

i R1[i].C R2[j].C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5

50 6
52 7

Example

CS 245 15

Cost of Merge Join

If R1 and R2 already sorted by C, then

cost = B(R1) + B(R2) reads

CS 245 16

(+ write cost of B(R1 ⨝ R2))

Cost of Merge Join

If Ri is not sorted, can sort it in 4 B(Ri) I/Os:
» Read runs of tuples into memory, sort
» Write each sorted run to disk
» Read from all sorted runs to merge
» Write out results

CS 245 17

Join with Index
for each rÎR1:

list = index_lookup(R2, C, r.C)
for each sÎlist:

output (r, s)

Read I/Os: 1 scan of R1, T(R1) index lookups
on R2, and T(R1) data lookups

cost = B(R1) + T(R1) (Lindex + Ldata)

CS 245 18

Can be less when R1 is sorted/clustered by C!

Hash Join (R2 Fits in RAM)
hash = load R2 into RAM and hash by C
for each rÎR1:

list = hash_lookup(hash, r.C)
for each sÎlist:

output (r, s)

Read I/Os: B(R1) + B(R2)

CS 245 19

Hash Join on Disk

Can be done by hashing both tables to a
common set of buckets on disk
» Similar to merge sort: 4 (B(R1) + B(R2))

Trick: hash only (key, pointer to record) pairs
» Can then sort the pointers to records that

match and fetch them near-sequentially

CS 245 20

Other Concerns

Join selectivity may affect how many records
we need to fetch from each relation
» If very selective, may prefer methods that

join pointers or do index lookups

CS 245 21

Summary

Join algorithms can have different
performance in different situations

In general, the following are used:
» Index join if an index exists
» Merge join if at least one table is sorted
» Hash join if both tables unsorted

CS 245 22

Outline

What can we optimize?

Rule-based optimization

Data statistics

Cost models

Cost-based plan selection

CS 245 23

Complete CBO Process

Generate and compare possible query plans

Query

Generate Plans

Prune x x

Estimate Cost Costs

Select
CS 245 24

Pick Min

How to Generate Plans?

Simplest way: recursive search of the
options for each planning choice

CS 245 25

Access paths
for table 1

Access paths
for table 2

Algorithms
for join 1

Algorithms
for join 2⨯ ⨯ ⨯ ⨯ …

How to Generate Plans?

Can limit search space: e.g. many DBMSes
only consider “left-deep” joins

CS 245 26

Often interacts well with conventions for specifying join inputs in
asymmetric join algorithms (e.g. assume right argument has index)

How to Generate Plans?

Can prioritize searching through the most
impactful decisions first
» E.g. join order is one of the most impactful

CS 245 27

How to Prune Plans?

While computing the cost of a plan, throw it
away if it is worse than best so far

Start with a greedy algorithm to find an
“OK” initial plan that will allow lots of pruning

CS 245 28

Memoization and Dynamic
Programming
During a search through plans, many
subplans will appear repeatedly

Remember cost estimates and statistics
(T(R), V(R, A), etc) for those: “memoization”

Can pick an order of subproblems to make it
easy to reuse results (dynamic programming)

CS 245 29

Resource Cost of CBO

It’s possible for cost-based optimization
itself to take longer than running the query!

Need to design optimizer to not take too
long
» That’s why we have shortcuts in stats, etc

Luckily, a few “big” decisions drive most of
the query execution time (e.g. join order)

CS 245 30

