Query Execution

Overview
Relational operators

Execution methods



Query Execution Overview

Recall that one of our key principles in data
intensive systems was declarative APIs

» Specify what you want to compute, not how

We saw how these can translate into many
storage strategies

How to execute queries in a declarative API?

CS 245 32



Query Execution Overview

CS 245

Query representation
(e.g. SQL)

Loglcal query plan
(e.g. relational algebra)

methods: per-record

exec, vectorization,
compilation

Physmal plan
(code/operators to run)

Many execution
Optimized logical plan

33



Plan Optimization Methods

Rule-based: systematically replace some
expressions with other expressions

» Replace X OR TRUE with TRUE
» Replace M*A + M*B with M*(A+B) for matrices

Cost-based: propose several execution plans
and pick best based on a cost model

Adaptive: update execution plan at runtime



Execution Methods

Interpretation: walk through query plan
operators for each record

Vectorization: walk through in batches

Compilation: generate code (like System R)



Typical RDBMS Execution

SQL query

parse
parse tree

result
convert

logical query plan

v execute
apply® statistics - 3

“improved” l.q.p

T e |
estimate result sizes >+ B

l.g.p. +sizes {(P1,C4), (P2,Co), ...} T

A 4

A

{P1, Po, ...}



Query Execution

Overview
Relational operators

Execution methods



The Relational Algebra

Collection of operators over tables (relations)
» Each table has named attributes (fields)

Codd’s original RA: tables are sets of tuples
(unordered and tuples cannot repeat)

SQL’s RA: tables are bags (multisets) of
tuples; unordered but each tuple may repeat



Relational Algebra Operators

Basic set operators:

Intersection: RN S

Union:RuU S - for tables with same schema

Difference: R-S

Cartesian Product: R xS {(ns)|reR,seS}



Relational Algebra Operators

Basic set operators:

Intersection: RN S

consider both distinct (set union)
and non-distinct (bag union)

Union: RU S

Difference: R-S

Cartesian Product: R x S

CS 245 40



Relational Algebra Operators

Special query processing operators:
Selection: o, 4iion(R) {1 e R | condition(r) is true }
Projection: Il cssions(R) { expressions(n) [r e R}

Natural Join: RD<IS {(s)eR x S)|rkey =s.key}
where key is the common fields

CS 245 41



Relational Algebra Operators

Special query processing operators:

Aggregation: ., G, qa(R)  SELECT agg(attr)
FROM R

GROUP BY keys

Exam ples: departmentG Max(salary)(Em ployees)

G Max(salary)(Em plOyeeS)



Algebraic Properties

Many properties about which combinations
of operators are equivalent

» That’s why it’s called an algebral



Properties: Unions, Products
and Joins

Tuple order in a relation

RUS=SUR doesn’t matter (unordered)
RUSBUT) =(RUS)UT

Attribute order in a relation
RxS=SxR doesn’t matter either

RxS)xT=Rx(SxT)

Rp>xaS=SX>R
R<1S)<T=RMXESXT)

CS 245 »



Properties: Selects

Op/\q(R) —

Opvq(R) =



Properties: Selects

Opvg(R) = 0,(R) U 6,4(R)

!

careful with repeated elements

CS 245



Bags vs. Sets

R ={a,a,b,b,b,c}
S ={b,b,c,c,d}
RuS=7?



Bags vs. Sets

R ={a,a,b,b,b,c}
S ={b,b,c,c,d}
RuS="7?

* Option 1: SUM of counts
RuS={aab,b,b,b,b,c,c,c,d}

» Option 2: MAX of counts
RuS={a,ab,b,b,c,c,d}



Executive Decision

Use “SUM” option for bag unions

Some rules that work for set unions cannot
be used for bags



Properties: Project

Let: X = set of attributes
Y = set of attributes

Iy (R) =



Properties: Project

Let: X = set of attributes
Y = set of attributes

Iy (R) = HX(HY(R))



Properties: Project

Let: X = set of attributes
Y = set of attributes

Iy (R) = L1y )



Properties: ¢ + X

Let p = predicate with only R attribs
q = predicate with only S attribs

m = predicate with only R, S attribs

0,(R < S) =
O4(R < S) =



Properties: ¢ + X

Let p = predicate with only R attribs
q = predicate with only S attribs

m = predicate with only R, S attribs

0,(R < S) = 0,(R) X S
04(R < S) = R < 0,4(S)



Properties: ¢ + X
Some rules can be derived:
Oprg(R DX S) =

Op/\q/\m(R > S) —

Opvg(R DX S) =



Properties: ¢ + X
Some rules can be derived:
Oprg(R DX S) = 6,(R) D 04(S)

Opagam(R P S) = G,(0p(R) B 04(S))

Oo(R D S) = (0,(R) >4 S) U (R 1< 04(S))



Prove One, Others for Practice
Opng(R DI S) = 0, (04(R > S))
= 0, (R > 04(9))

= 0, (R) < g,(S)



Properties: I1 + o

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

[1,(o, (R)) =



Properties: I1 + o

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)



Properties: I1 + o

Let x = subset of R attributes

z = attributes in predicate p
(subset of R attributes)

[0, (R)) = T1i(0,(11y,(R)))



Properties: 11 + <

Let X = subset of R attributes
y = subset of S attributes
Z = intersection of R,S attributes

M (RD>IS) = Ty, (T, (R)) > (I, (S))



Typical RDBMS Execution

SQL query

parse
parse tree

result
convert

logical query plan

v execute
apply® statistics - 3

“improved” l.q.p

T e |
estimate result sizes >+ B

l.g.p. +sizes {(P1,C4), (P2,Co), ...} T

A 4

A

{P1, Po, ...}



Example SQL Query

SELECT title
FROM Starsln
WHERE starName IN (
SELECT name
FROM MovieStar
WHERE birthdate LIKE €%1960°

)5

(Find the movies with stars born in 1960)



Parse Tree

<Query>

|
=
SELECT <SelList> FROM <FromList> WHERE <Condition>

\ / a

<Attrit‘>ute> <RelName> <Tuple> IN <Ql?/>\ \
title Starsin <Attribute\> ( <Query>/ )

er

SELECT <SelList> FROM <FromList> WHERE <Condition>

/ /

<Attribute> <RelName> <Attribute> LIKE <Pattern>

| | | |

name MovieStar birthDate ‘961960’



Logical Query Plan

I Ttitle

GstarName=name

X

N

Starsin Hname

O birthdate LIKE ‘%1960’

MovieStar



Improved Logical Query Plan

I Ltitie

‘ Question:
] Push I,
starName=name to StarsIn?

/N

Starsin Hname

O birthdate LIKE ‘%1960’

MovieStar



Estimate Result Sizes

> Need expected size

Starsin

MovieStar



One Physical Plan

Hash ioin |- Parameters: join order,
. memory size, project attributes, ...
H
Seq scan Index scan —, Parameters:
9 select condition, ...

Starsin MovieStar



Another Physical Plan

Hash ioin |- Parameters: join order,
. memory size, project attributes, ...
H
Index scan Seq scan —, Parameters:
9 select condition, ...

Starsin MovieStar



Another Physical Plan

Sort-merge join

\

Seq scan Seq scan

Starsin MovieStar

Which plan is likely to be better?

CS 245

70



Estimating Plan Costs

Logical plan
P, P, P,
\ \ \
C, C, C,
T
Pick best!

Physical plan
candidates

Covered in next few lectures!



Query Execution

Overview
Relational operators

Execution methods



Now That We Have a Plan,
How Do We Run it?

Several different options that trade between
complexity, setup time & performance



Example: Simple Query

SELECT quantity * price
FROM orders
WHERE productId = 75

1_Iquanity*price (Oproductld=75 (orders))



Method 1: Interpretation

interface Operator { interface Expression {
Tuple next(); Value compute(Tuple in);

} }

class TableScan: Operator { class Attribute: Expression {
String tableName; String name;

} }

class Select: Operator { class Times: Expression {
Operator parent; Expression left, right;
Expression condition; }

}

class Equals: Expression {

class Project: Operator { Expression left, right;

Operator parent; }

Expression[] exprs;

}



Example Expression Classes

class.Attr‘lbute: Expression { probably better to use a
String name; D e :
numeric field ID instead

Value compute(Tuple in) {
return in.getField(name);

}
}

class Times: Expression {
Expression left, right;

Value compute(Tuple in) {
return left.compute(in) * right.compute(in);

}
}

CS 245 76



Example Operator Classes

class TableScan: Operator {
String tableName;

Tuple next() {
// read & return next record from file

}
}

class Project: Operator {
Operator parent;
Expression[] exprs;

Tuple next() {
tuple = parent.next();
fields = [expr.compute(tuple) for expr in exprs];
return new Tuple(fields);

}



Running Our Query with
Interpretation

ops = Project(
expr = Times(Attr(“quantity”), Attr(“price”)),
parent = Select(
expr = Equals(Attr(“productId”), Literal(75)),
parent = TableScan(“orders”)

)
)s

while(true) { —
Tuple t = ops.next();

if (t !'= null) {
out.write(t);

y else { Pros & cons of this

break;

} approach?

recursively calls Operator.next()
and Expression.compute()

}

CS 245 78



Method 2: Vectorization

Interpreting query plans one record at a time
IS simple, but it’s too slow

» Lots of virtual function calls and branches for
each record (recall Jeff Dean’s numbers)

Keep recursive interpretation, but make
Operators and Expressions run on batches



Implementing Vectorization

class TupleBatch { class ValueBatch {
// Efficient storage, e.g. // Efficient storage
// schema + column arrays }
}
interface Expression {
interface Operator { ValueBatch compute(
TupleBatch next(); TupleBatch in);

} }



Typical Implementation

Values stored in columnar arrays (e.g. int[])
with a separate bit array to mark nulls

Tuple batches fit in L1 or L2 cache

Operators use SIMD instructions to update
both values and null fields without branching



Pros & Cons of Vectorization

+ Faster than record-at-a-time if the query
processes many records

+ Relatively simple to implement
— Lots of nulls in batches if query is selective

— Data travels between CPU & cache a lot

CS 245 82



Method 3: Compilation

Turn the query into executable code



Compilation Example

1—Iquanity*price (Oproductld=75 (orders))

. generated class with the right

class MyQuery { / field types for orders table
void run() {

Iterator<OrdersTuple> in = openTable(“orders”);
for(OrdersTuple t: in) {
if (t.productld == 75) {
out.write(Tuple(t.quantity * t.price));

} Can also theoretically generate

vectorized code




Pros & Cons of Compilation

+ Potential to get fastest possible execution
+ Leverage existing work in compilers

— Complex to implement
— Compilation takes time

— Generated code may not match hand-written

CS 245 85



What’s Used Today?

Depends on context & other bottlenecks

Transactional databases (e.g. MySQL):
mostly record-at-a-time interpretation

Analytical systems (Vertica, Spark SQL):
vectorization, sometimes compilation

ML libs (TensorFlow): mostly vectorization
(the records are vectors!), some compilation



