
Khemis Miliana University

 خميس مليانة –جامـعة جيلالي بونعامة

Faculty of Science and Technology كلية العلوم والتكنولوجيا

Mathematics and Computer Science Department قسم الرياضيات و الاعلام الالي

Module : Operations Research 1

Responsible: Dr. I. Ait Abderrahim

Tutorial sheet 1

Problem: Thief optimization

A thief robs a jewellery shop. With a backpack of fixed capacity he attempts to rob the valuables.

Each item he can take has a profit and a weight. When filling his backpack he must respect its total

capacity (i.e., the sum of the item sizes should be less than the capacity). His goal is to maximize the

total profit of the items he steals but he cannot carry too much weight.

Task: Solve the problem using python programming language.

Solution

from itertools import combinations

def ThiefProb_bruteforce(values, weights, capacity):
 n = len(values)

 # Generate all possible combinations of items
 all_combinations = []
 for r in range(1, n + 1):
 all_combinations.extend(combinations(range(n), r))

 # Initialize variables to store the best solution
 best_value = 0
 best_selection = []

 # Iterate through all combinations and find the best solution
 for comb in all_combinations:
 total_value = sum(values[i] for i in comb)
 total_weight = sum(weights[i] for i in comb)

 if total_weight <= capacity and total_value > best_value:
 best_value = total_value
 best_selection = list(comb)

 return best_value, best_selection

Example usage
values = [60, 100, 120]
weights = [10, 20, 30]
capacity = 50

optimal_value, selected_items = ThiefProb _bruteforce(values, weights, capacity)
print("Optimal Value:", optimal_value)
print("Selected Items:", [values[i] for i in selected_items])

Correct answer:

