

Operations Research (OR)

course03- Modeling 1- Network Flow Problems

Imène AIT ABDERRAHIM i.aitabderrahim@univ-dbkm.dz Khemis Miliana University

Outline

- Motivation
- Network flow problem
- Transshipment Problem
 - Overview
 - Example
 - Formulation
- Summary

Motivation: Logistics

Network Flow problem

In <u>combinatorial optimization</u>, **network flow problems** are a class of computational problems in which the input is a <u>flow</u> <u>network</u> (a graph with numerical capacities on its edges), and the goal is to construct a <u>flow</u>, numerical values on each edge that respect the capacity constraints and that have incoming flow equal to outgoing flow at all vertices except for certain designated terminals.

Network Flow problem

Transshipment problem

Definition

The *transshipment flow problem* is a type of network flow problem that involves determining the optimal flow of goods or materials through a network, where intermediate nodes can both receive and send shipments.

The goal is to minimize the total cost of <u>transporting</u> goods from **source nodes (supply)** to **destination nodes (demand)** while satisfying capacity constraints at each node.

Transshipment problem: Overview

Location types:

 Production

Transshipment problem: Overview

Location types:
 Production
 Consumption

Transshipment problem: Overview

Location types: Production Consumption Transshipment

Not pictured: completely connected graph.

Goal: Flow units of a product from locations of production to locations of consumption, using transshipment nodes if necessary, such that the total cost of doing so is minimized.

In this example, we take a balanced transportation problem, we suppose that we assume that we have 3 supply (production) nodes and 4 demand (comsumption) nodes with 2 tanssmission nodes.
Let's assume that supply nodes produce 7, 9 and 8 units respectively, and demand nodes consume 5, 7, 6, and 6 units respectively.

Solution 1:

- We have a graph, and each arc is labed with a cost.
- Assume that the direction of the arc is from left to right
- First, we assume that all arcs have sufficient capacity.

Solution 2:

 Now, let's impose a limited capacity (k=3) on the arc going from the top supply node to the top tansshipment (transmission) node

• The total **cost** for Solution1 is 70 and for solution 2 is 74.

Transshipment problem: Formulation

Parameters and variables

Parameters:

- > Graph **G** = (*N*, *A*), with *N*= *N* ⁺ ∪ *N* [↔] ∪ *N* ⁻
- > Supply p_i at node $i \in N^+$
- > Demand d_i at node $i \in N^-$
- > Cost c_{ij} of using arc $(i, j) \in A$
- > Capacity κ_{ij} of arc $(i, j) \in A$

Variables:

> \mathbf{x}_{ij} : Amount of flow on arc $(i, j) \in A$

Transshipment problem: Formulation

Objective and constraints

Parameters:

Objective function:

- > Graph $\boldsymbol{G} = (N, A)$
- Supply *p_i*
- Demand *d_i*
- ▹ Cost c_{ij}
- > Capacity κ_{ij}

Variables:

> Flow **x**_{ij} :

minimize $\sum c_{ij} x_{ij}$

Constraints: S.t.

$$\sum_{(i,j)\in A} x_{ij} - \sum_{(j,i)\in A} x_{ji} = \begin{cases} p_i & \text{if } i \in N^+ \\ -d_i & \text{if } i \in N^- \\ \mathbf{0} & \text{otherwise} \end{cases}$$
$$\forall i \in N$$

 $0 \leq x_{ij} \leq k_{ij} \quad \forall (i,j) \in A$

summary

Today we learned:

- What is a network flow problem
- How to model a transshipment problem into a linear programming problem (LPP)

Questions?