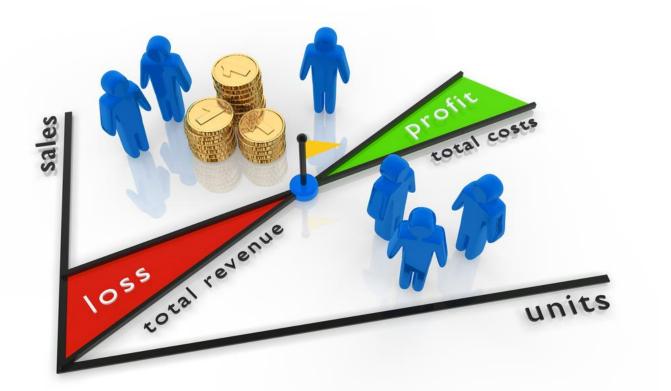

# **Operations Research (OR)**

# course02- Linear Programming (LP)


Imène AIT ABDERRAHIM i.aitabderrahim@univ-dbkm.dz Khemis Miliana University

# Outline

- What is Linear Programming (LP) and why we need it?
- Linear function and inequalities
- LP standard form
- Characteristics of LPP
- How to know if my model is valid?
- Example prototype: Chocolate manufacture



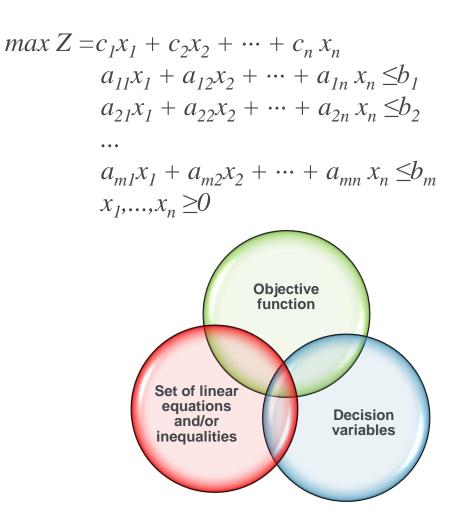
# What is Linear Programming and why we need it?





## **Linear Function & Inequality**

- A function  $f(x_1, x_2, ..., x_n)$  is a linear function iff it can be written in the following form  $f(x_1, x_2, ..., x_n) = c_1x_1 + c_2x_2 + ... + c_nx_n$ where  $c_1, c_2, ..., c_n$  are coefficients.
- For any linear function  $f(x_1, x_2, ..., x_n)$  and any constant number b, the inequalities  $f(x_1, x_2, ..., x_n) \ge b$  and  $f(x_1, x_2, ..., x_n) \le b$  are linear inequalities.

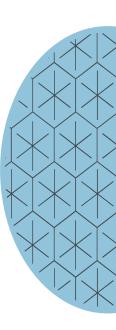

## **Linear Function & Inequality**

Examples: select which functions are linear

- a)  $-2x_1 + 5x_2 x_3 \le 4$
- b)  $2x_1x_2 + 3 + 3x_3^2 \le 3$
- c)  $(x_1 + 2x_2 3x_3)(x_1 + x_2 x_3) \ge 4$
- d)  $e^a x_1 + \ln(b) x_2 \ge x_3 + c$ , a, b, and c are constants

# **LP Standard Form**

 $max Z = c^T x$  $Ax \leq b$  $x \geq 0$ 




> c Objective function vector
> x Decision variable vector
> A Coefficient matrix
> b "Right hand side"



# Checklist "Is my model valid?"

- 1. No exponents on any variables
- 2. Objective is a linear combination?
- 3. All constraints are linear combinations?
- 4. Right hand side is always a constant or linear combination?
- 5. No variables are multiplied/divided by each other?
- 6. Non-negative constraints present where necessary



#### **Problem Statement**

Consider a chocolate manufacturing company which produces only two types of chocolate – A and B. Both the chocolates require Milk and Choco only. To manufacture each unit of A and B, following quantities are required: Each unit of A requires 1 unit of Milk and 3 units of Choco Each unit of B requires 1 unit of Milk and 2 units of Choco The company kitchen has a total of 5 units of Milk and 12 units of Choco. On each sale, the company makes a profit of 6 Currency per unit A sold 5 Currency per unit B sold. Now, the company wishes to maximize its profit. How many units of A and B should it produce respectively?



← Chocolate A

Chocolate B →



#### **Objective function: The problem which is being optimized**

- Chocolate A -> 1 Milk 3 Cocoa
- Chocolate B -> 1 Milk 2 Cocoa
- Milk -> 5
- Cocoa -> 12



- Profit on selling one unit of A -> 6, on selling x units of A -> 6x
- Profit on selling one unit of B -> 5, on selling y units of B -> 5y
- Total Profit (z) on selling x units of A and y units of  $B \rightarrow z = 6x + 5y$ 
  - → Maximizing profit -> maximize 6x + 5y.
  - $\rightarrow$  = maximize(z)

So z becomes the objective function required to be maximized.

# Constraints: Things which decide the outcome of the objective function

The company wants to maximize the profit given the constraint that they have 5 units of milk and 12 unit of Cocoa.

- one unit of A requires 1 unit of milk, x units of A -> x units of milk
- one unit of B requires 1 unit of milk, y units of B -> y units of milk
- total milk = 5 Units x + y <= 5</p>

#### Similarily for Cocoa

- one unit of A requires 3 unit of Cocoa, x units of A -> 3x units of Cocoa
- one unit of B requires 2 unit of Cocoa, y units of B -> 2y units of Cocoa
- total Cocoa = 12 Units 3x + 2y <= 12</p>

Also the company can produce 0 or more units of A and 0 or more units of B

- x >= 0
- y >= 0



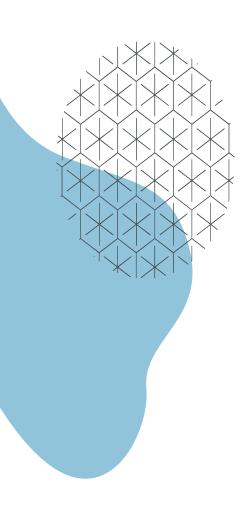


#### Solving the problem

| Case 1                                                     | Case 2                                                     | Case 3                                                     |
|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| We decide to make all<br>Chocolate A                       | We decide to make all<br>Chocolate B                       | We decide to make Chocolate<br>A & B                       |
| No° of choclates possible=                                 | No° of choclates possible=                                 | No° of choclates possible=                                 |
| Milk needed=<br>Cocoa needed=<br>Milk left=<br>Cocoa left= | Milk needed=<br>Cocoa needed=<br>Milk left=<br>Cocoa left= | Milk needed=<br>Cocoa needed=<br>Milk left=<br>Cocoa left= |
| Profit=                                                    | Profit=                                                    | Profit=                                                    |
|                                                            |                                                            |                                                            |

**Mathematical model** 

max 
$$Z = x6 + 5y$$
  
s.t:  
 $x + y \le 5$   
 $3x + 2y \le 12$   
 $x, y \ge 0$ 


#### **Solution**

| Case 1                       | Case 2                        | Case 3                             |
|------------------------------|-------------------------------|------------------------------------|
| We decide to make all        | We decide to make all         | We decide to make Chocolate        |
| Chocolate A                  | Chocolate B                   | A & B                              |
| No° of choclates possible= 4 | No° of choclates possible= 5  | No° of choclates possible= 2A & 3B |
| Milk needed= 4               | Milk needed= 5                |                                    |
| Cocoa needed= 12             | Cocoa needed= <mark>10</mark> | Milk needed= 5                     |
| Milk left= 1                 | Milk left= 0                  | Cocoa needed= 12                   |
| Cocoa left= 0                | Cocoa left= 2                 | Milk left= 0                       |
|                              |                               | Cocoa left= <mark>0</mark>         |
| Profit= 24                   | Profit= 25                    |                                    |
|                              |                               | Profit= 27                         |
|                              |                               |                                    |
|                              |                               |                                    |

### summary

Today we learned:

- what is linear programming and its standard form
- How to model a problem into a linear programming problem (LPP)



# **Questions?**