Série d'exercices N°2

Exercice 1

A T=25°C, la tension superficielle des mélanges éthanol-eau obéit à l'équation $\gamma = -0.5C+0.2C^2$. Dans laquelle C désigne la concentration en éthanol exprimée en mol/l. Calculer l'excès de concentration superficielle en mol/cm² dans une solution de 0,5 mol/l.

Exercice 2

Déterminer la concentration superficielle de l'acide $C_8O_3H_3$, sachant que un (01) litre d'eau contient 30 mg de cet acide et que la tension superficielle de la solution est de 56,32 10^{-3} N/m et celle de l'eau est de 73. 10^{-3} N/m à 25 °C, M=158g/mol

Préciser la nature de l'adsorption.

Excercice 3

Un composé insoluble x se répond à la surface de l'eau à la faible concentration une pellicule de type gazeux, si on verse 10^{-7} g, de x sur une surface de 200 cm². On réduit la tension superficielle de 0,2 dynes/cm.

Calculer le poids moléculaire de x à T=25°C.

Exercice 4

On considère une solution de 2. 10^{-4} mol d'un agent tensioactif. On détache le film superficiel dont on détermine la surface. La concentration superficielle due à l'adsorption est de 3. 10^{-10} mol/cm².

Calculer la tension superficielle de la solution à T=25 °C (γ_0 de l'eau est de 72 dynes/cm).

Exercice 5

On étudie la variation de la tension superficielle de l'eau en fonction du pourcentage de phénol ajouté, dans un volume d'eau. Les résultats expérimentaux effectués à 30°C sont donnée dans le tableau cidessous :

Pourcentage de	0,024	0,047	0,118	0,475
phénol (%)				
γ (dyne/cm)	72,8	72,2	71,3	66,5

- 1. Calculer la concentration superficielle Γ à partir de l'isotherme de GIBBS pour une solution à 0,1% de phénol.
- 2. Quelle serait la concentration que donnerait un abaissement de 20 dynes/cm?

On donne: $\gamma_{eau} = 73,20 \text{ dyne/cm}, R = 8,314.107 \text{ erg/mol.K}$