1.1. Tension superficielle

Las tension superficielle désigne :

Une force (F) par unité de longueur du périmètre (l), telle que : $\gamma = F/I$

Elle s'exprime en : N/m ou dyne/cm (1 $dyne = 10^{-5} N$).

La quantité extrême d'énergie possible par unité de surface, telle que : $\gamma = \partial W/\partial A$

Elle s'exprime en : J/m^2 ou erg/cm^2 (1 $erg = 10^{-7} J$).

1.1.1. Tension superficielle et fonctions thermodynamiques

Si le système est en équilibre thermodynamique avec l'extérieur, le travail qui lui est fourni dans une transformation élémentaire est :

 $\partial W_{m\acute{e}canique} = \partial W_P + \partial W_{TS}$

∂W_P: est le travail des forces de pression

 ∂W_{TS} : est le travail des forces de tension superficielle

 $\partial W_{chimique} = \sum \mu_i . dn_i$

 μ_i : est le potentiel chimique du constituent i

n_i: est le nombre de moles du constituent i

On en déduit l'énergie interne du système qui est ici définie par:

 $dU = \partial Q + \partial W_{m\acute{e}canique+chimique}$ (relation régissant le premier principe de la thermodynamique)

et $\partial \mathbf{Q} = \mathbf{T.dS}$ (second principe de la thermodynamique)

 $dU = T.dS - P. dV + \gamma. dA + \sum \mu_i . dn_i$

$$\left(\frac{\partial U}{\partial A}\right)_{S,V,n} = \gamma$$

$$H = U + P.V$$

$$dH = dU + P.dV + V.dP$$

$$dH = T.dS + \gamma. dA + \sum \mu_i.dn_i + V.dP$$

$$\left(\frac{\partial H}{\partial A}\right)_{S,P,n} = \gamma$$

Equation de Gibbs pour une phase surfacique:

$$G = H - T.S$$

$$dG = dH - T.dS - S.dT$$

$$dG = T.dS + \gamma. dA + \sum \mu_i.dn_i + V.dP - T.dS - S.dT$$

$$dG = \gamma \cdot dA + \sum \mu_i \cdot dn_i + V \cdot dP - S \cdot dT$$

$$\left(\frac{\partial G}{\partial A}\right)_{T,P,n} = \gamma$$

1.1.2. Effet de la température sur la tension superficielle

Eotvos a démontré expérimentalement la relation :

$$\gamma_{\rm T} = \gamma_0 \left(1 - \frac{\rm T}{\rm T_C}\right)$$

Avec:

 T_c : est la température critique (γ (T = Tc) = 0).

 $\gamma_{\rm T}$: est la tension superficielle à la température T.

 y_0 : est la tension superficielle caractéristique du corps.

On notera que la tension superficielle (γ) **diminue** lorsque la **température augmente** : cela s'explique par le fait que les forces de cohésion intermoléculaires sont réduites par l'agitation thermique.

1.2. Surface courbe

Beaucoup d'interfaces rencontrées sont sous forme de courbes (émulsions, bulles d'air, ...).

1.2.1. Équation de Laplace

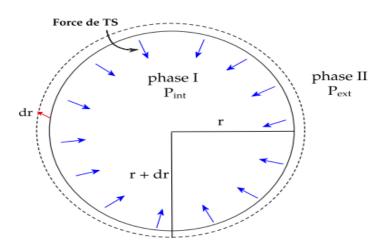


Figure 1 : Surpression de la goutte

Soit une goutte de rayon \mathbf{r} , Si on augmente le rayon de la goutte de \mathbf{r} à $\mathbf{r} + \mathbf{dr}$, on aura $\mathbf{dA} = \mathbf{8}$ π \mathbf{r} \mathbf{dr} . De la même manière son volume augmentera d'une quantité $\mathbf{dV} = \mathbf{4} \pi \mathbf{r}^2 \mathbf{dr}$.

Les forces de tension superficielle, qui sont dirigées vers l'intérieur de la goutte, exercent une compression à l'intérieur de celle-ci. La pression $\mathbf{p_{int}}$ dans la goutte est donc supérieure à celle du milieu extérieur, $\mathbf{p_{ext}}$. Cette compression est d'autant plus grande que les forces superficielles sont grandes, donc que la tension superficielle γ est élevée.

La surface d'une sphère vaut : $A = 4\pi r^2$. Son augmentation dA est égale à : $dA = 8\pi r dr$ Le volume d'une sphère vaut : $V = 4/3\pi r^3$. Son augmentation dV est égale à : $dV = 4\pi r^2 dr$

Ainsi, le travail élémentaire total des forces de pression (∂W_P) est donné par :

$$\partial \mathbf{W}_{\mathbf{P}} = \partial \mathbf{W}_{\mathbf{int}} + \partial \mathbf{W}_{\mathbf{ext}}$$

 ∂W_{int} : est le travail des forces de pression interne (P_{int})

 ∂W_{ext} : est le travail des forces de pression externe (P_{ext})

$$\partial \mathbf{W} = -\mathbf{P} \cdot \mathbf{dV} = -\mathbf{P} \cdot 4\pi \mathbf{r}^2 \mathbf{dr}$$

$$\partial W_P = P_{int} \cdot 4\pi r^2 dr - P_{ext} \cdot 4\pi r^2 dr$$

$$\partial \mathbf{W}_{\mathbf{P}} = (\mathbf{p}_{int} - \mathbf{p}_{ext}) 4\pi \mathbf{r}^2 \mathbf{dr}$$

D'un autre côté, nous avons aussi le travail des forces de tension superficielle (∂W_{TS}):

$$\partial \mathbf{W}_{TS} = \mathbf{\gamma} \ \mathbf{d}\mathbf{A}$$

$\partial W_{TS} = \gamma 8 \pi r dr$

À l'équilibre (existence de la goutte), les deux travaux sont égaux, soit :

$$\partial W_P = \partial W_{TS}$$

$$(\mathbf{p}_{\text{int}} - \mathbf{p}_{\text{ext}}) \, 4\pi \mathbf{r}^2 \mathbf{dr} = \gamma \, 8 \, \pi \, \mathbf{r} \, \mathbf{dr}$$

On retrouve ainsi, l'équation de Laplace

$P_{int} - P_{ext} = 2 \gamma / r$

Si « r » augmente, $(P_i - P_e)$ diminue : la pression est plus grande dans une petite bulle que dans une grande.

*Cas d'une bulle de savon :

La bulle de savon est formée d'un film fin de liquide (eau + tensioactif) comportant deux surfaces (interne et externe) supposées de même rayon \mathbf{r} (donc on applique deux fois l'équation de Laplace):

$$\begin{aligned} \mathbf{P}_{int} - \mathbf{P}_{s} &= 2 \; \gamma / \; \mathbf{r} \\ \mathbf{P}_{s} - \mathbf{P}_{ext} &= 2 \; \gamma / \; \mathbf{r} \\ \Delta \mathbf{P} &= \mathbf{P}_{int} - \mathbf{P}_{ext} = 4 \; \gamma / \; \mathbf{r} \end{aligned}$$

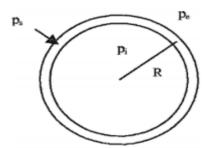


Figure 2 : Bulle de savon

1.2.2. Équation de Kelvin :

Un liquide en équilibre avec sa vapeur possède la même température, le même potentiel chimique et la même pression (pression de vapeur saturante, notée P_0).

On considère une goutte de liquide, de forme sphérique ayant un rayon r. A température constante, l'équilibre de la goutte avec sa vapeur se traduit par l'égalité des potentiels chimiques des deux phases, soit :

$$\mu_l(P_l, T) = \mu_g(P_g, T)$$
 Eq. (1)

Par définition le potentiel chimique d'une phase i, ayant une quantité de matière n_i , est donné par :

$$\mu_i = \frac{\partial G_i}{\partial n_i} = \ g_i \qquad \qquad Eq. \ (2)$$

À partir de l'Eq. (1) et tenant compte de la relation : $\mu = h - T.s$, on a :

$$d\mu = dh - T.ds - s.dT$$

On a:

$$\mathbf{h} = \mathbf{u} + \mathbf{P.V}$$
 d'où: $\mathbf{dh} = \mathbf{du} + \mathbf{P.dV} + \mathbf{V.dP}$

Et:
$$\mathbf{du} = \partial \mathbf{q} + \partial \mathbf{w}$$
 d'où: $\mathbf{du} = \mathbf{T.ds} - \mathbf{P.dV}$

Donc :
$$d\mu = T.ds - P.dV + P.dV + V.dP - T.ds - s.dT$$

$$D'o\dot{u}: d\mu = V.dP - s.dT$$

On obtient:

$$d\mu_l\left(P_l,T\right) = d\mu_g\left(P_g,T\right) \Longleftrightarrow V_l dP_l - s_l dT = V_g dP_g - s_g dT$$

$$T = Cte \longrightarrow dT = 0$$

On aura :
$$V_l dP_l = V_g dP_g$$
 Eq. (3)

Avec:

 V_l : volume molaire pour la phase liquide.

 $V_{\rm g}$: volume molaire pour lea phase gazeuse (vapeur).

Or, d'après la loi de Laplace écrite précédemment, il vient :

$$P_1 - P_g = 2 \gamma / r$$
 Eq. (4)

En calculant la différentielle de cette équation par rapport au rayon :

$$dP_1 - dP_g = -2 \gamma / r^2 dr \Rightarrow dP_1 - dP_g = -2 \gamma / r^2 dr$$
 Eq. (5)

D'après l'Eq. (3),
$$dP_l = \frac{v_{g.dPg}}{v_l}$$
 Eq. (6)

En substituant l'Eq. (6) dans (5) et en considérant $V_g >>> V_1$:

$$V_g dP_g = -\frac{2 \gamma V_1 dr}{r^2} \qquad Eq. (7)$$

En assimilant la vapeur à un gaz parfait, $V_g = \frac{R.T}{P_g}$ et $V_l = \frac{M}{\rho_l}$ on obtient :

$$\frac{dPg}{P_g} = -\frac{2\,\gamma\,M}{RT\rho_l}\frac{dr}{r^2} \qquad \qquad Eq. \, (8) \label{eq:pg}$$

L'équation de **Kelvin** est obtenue par intégration de cette dernière équation, selon :

$$\label{eq:power_power} \int_{P_0}^{P_g} \frac{\text{d} Pg}{P_g} = -\frac{2\,\gamma\,\text{M}}{RT\rho_l}\,\int_{\infty}^{r} \frac{\text{d} r}{r^2} \qquad \qquad \text{Eq. (9)}$$

$$\ln\left(\frac{P_g}{P_0}\right) = +\frac{2 \gamma M}{RT\rho_1} \cdot \frac{1}{r} = +\frac{\Delta P.M}{RT\rho_1}$$
 Eq. (10)

Avec, M est la masse molaire du liquide et ρ_l sa masse volumique. R étant la constante des gaz parfaits qui vaut : 8.314 J/K mol.

1.3 Méthodes de mesure de la tension superficielle

1.3.1 Loi de Jurin : ascension et dépression capillaires

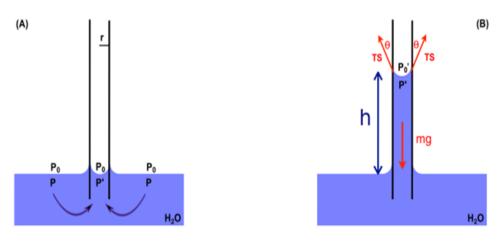


Figure 3: Ascension capillaire

 \mathbf{F}_{asd} (\mathbf{F}_{TS}): la force de tension superficielle

 $\mathbf{F}_{des}(\mathbf{P})$: le poids de pesanteur

La force ascensionnelle est donnée par la relation suivante:

$$\mathbf{F}_{TS} = \gamma . \mathbf{l}$$

Avec $\mathbf{l} = 2.\pi \mathbf{r}$: circonférence du tube

La projection de \mathbf{F}_{TS} sur l'axe de la paroi du tube donne:

 $F_{TS} = \gamma . 2.\pi . r. \cos \theta$

La force liée à la pesanteur **P** qui s'exerce sur tout le volume de la colonne du liquide s'exprime par une relation :

$P = m.g = \rho.V.g = \rho.\pi.r^2.h.g$

À l'équilibre ces deux forces sont égales et de sens contraire de telle sorte que :

 $\mathbf{F}_{TS} = \mathbf{P}$

 $\gamma.2.\pi.r.\cos\theta = \rho.\pi.r^2.h.g$ $\longrightarrow h = 2. \gamma.\cos\theta / \rho.r. g$ (Loi de JURIN)

γ: tension superficielle du liquide

ρ : masse volumique du liquide

r : rayon interne du capillaire

h : hauteur de la montée (de la descente) capillarimétrique

g : accélération de la pesanteur

θ: Angle de contact

Si au contraire le liquide ne mouille pas les parois du tube capillaire, c'est-à-dire $\theta > \pi/2$, dans ce cas on observera une **dépression capillaire**. La **loi de Jurin** donnera une **hauteur négative**.

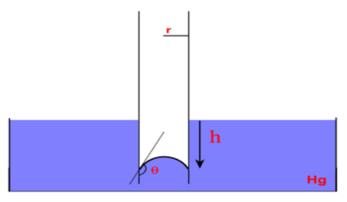


Figure 4 : Dépression capillaire

Remarque:

- le liquide mouille parfaitement le solide $(\theta = 0 \cos \theta = 1)$
- le liquide mouille imparfaitement le solide ($\theta < 90^{\circ}$)
- le liquide ne mouille pas le solide $(\theta > 90^\circ)$

1.3.2 Méthode du stalagmomètre

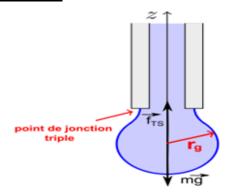


Figure 5: Goutte en équilibre

A l'équilibre on a:

$$\mathbf{m.g} = 2.\pi.\mathbf{r.\gamma}$$

Pour un volume V_l d'une solution, nous avons :

$$\mathbf{M}_{l} = \mathbf{V}_{l} \cdot \mathbf{\rho}_{l} = \mathbf{N}_{l} \cdot \mathbf{m} \longrightarrow \mathbf{m} = \mathbf{V}_{l} \cdot \mathbf{\rho}_{l} / \mathbf{N}_{l}$$

Avec:

 M_l : est la masse de la solution

 ρ_l : est la masse volumique de la solution

 N_l : est le nombre de gouttes de la solution.

m : est la masse d'une goutte de la solution

On peut alors écrire :

$$2.\,\pi.\,r.\,\gamma_l = \, \frac{v_{l}.\rho_l}{N_l} \,\, g \,\, \rightarrow \,\, V_l = \, \frac{N_l.2.\pi.r.\gamma_l}{g.\rho_l} \,$$

Il en ressort que pour un même tube capillaire, un même volume du liquide et en prenant un liquide de tension superficielle connue, l'eau par exemple ($\gamma_e = 72.8$ dynes/cm), on peut écrire de façon analogue :

$$V_e = \frac{N_e.2.\pi.r.\gamma_e}{g.\rho_e}$$

Ainsi

$$V_l = V_e \rightarrow \frac{N_l.2.\pi.r.\gamma_l}{g.\rho_l} = \frac{N_e.2.\pi.r.\gamma_e}{g.\rho_e}$$

Il est possible ainsi de remonter à la tension superficielle inconnue γ_1 , selon :

$$\gamma_{l} = \frac{\rho_{l}}{\rho_{e}} \frac{N_{e}}{N_{l}} \gamma_{e}$$

Par ailleurs, la goutte pendante se détachera une fois que son poids excède la force capillaire au point de jonction triple : air, liquide et solide. Quand la goutte chute, elle reprend une forme sphérique dont le rayon est donné par la **loi de Tate** :

$$r_g = \left(\frac{3.\gamma.r}{2.\rho_l.g}\right)^{1/3}$$

1.3.3 Méthode de l'arrachement de l'anneau

Le principe de base de cette méthode consiste à mesurer la force d'attraction \mathbf{F} qui exerce les particules du liquide sur les parois internes et externes d'un anneau, au moment de l'arrachement de la surface.

$$F = 2\pi\gamma(r_{ext} + r_{int})\cos\theta$$

En effet, en utilisant un anneau traité de façon à ce qu'il soit parfaitement mouillé par le

liquide : $\theta = 0 \Rightarrow \cos \theta = 1$

A l'équilibre : $P = F_{TS}$

P: le poids de pesanteur

F_{TS}: la force de tension superficielle

$$\mathbf{m.g} = 2\pi\gamma(r_{ext} + r_{int})$$

Donc: $\gamma = m g / 2\pi (r_{ext} + r_{int})$

En pratique : $r_{ext} \approx r_{int} = r$, donc :

 $\gamma = m.g / 4.\pi.r$

Avec:

r : est le rayon de l'anneau

m : est la masse du liquide soulevé après l'arrachement de l'anneau.

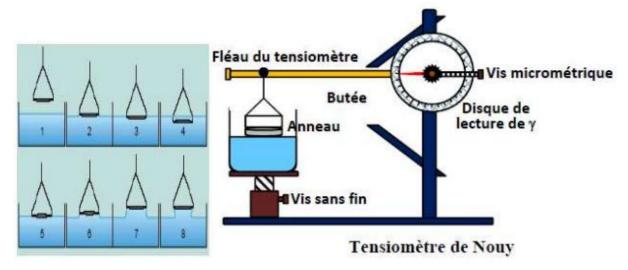


Figure 6 : Arrachement de l'anneau