Djilali BOUNAAMA University of Khemis Miliana **Matter and Computer Sciences Faculty Physics Department**

Series N°5

Exercise 1:

Be the following reaction:

 $CH_3Cl + C_2H_5ONa$ — \rightarrow CH₃OC₂H₅ + NaCl

The following experimental results are obtained:

T(°C)	0	6	12	18	24	30
K (mol/l.s)	5.6. 10 ⁻⁵	11.8. 10 ⁻⁵	24.5. 10 ⁻⁵	48.8. 10 ⁻⁵	100. 10 ⁻⁵	208. 10 ⁻⁵

- 1) What is the order of reaction?
- 2) Does the reaction obey the law of Arrhenius?
- 3) Give the value of the activation energy, knowing that the constant R = 2 cal/K.mol

Exercise 2:

The following global elementary reaction 1 is considered:

 $HbO_2 \longrightarrow Hb + O_2$

Translating the transformation of oxyhemoglobin. It is found that after 9.10⁻³ seconds, 30% of the oxyhemoglobin disappeared.

- 1) Determine the speed constant K of this reaction and the half-reaction time t1/2.
- 2) Calculate the percentage of oxyhemoglobin remaining after 20.10⁻³ seconds.

Exercise 3:

The saponification reaction of ethyl formate by soda ash was studied at 20°C:

 $HCOOC_2H_5 + NaOH \longrightarrow HCOONa + C_2H_5OH$

The initial concentrations of soda and ester are:

 $[HCOOC_2H_5] = [NaOH] = 0.01 \text{ mol/l}$

The following table gives concentrations of the ester as a function of time.

[HCOOC ₂ H ₅] (mol/l)	0.01	7.4. 10 ⁻³	6.83. 10 ⁻³	6.34. 10 ⁻³	5.89. 10 ⁻³
t(s)	0	180	240	300	360

- 1) Show from the above numerical data that the reaction is global 2.
- 2) Calculate:
- -The reaction velocity constant K.
- -The period t1/2
- -The time required for the disappearance of 99% ester.

Exercise 4:

The equation reaction: $3 \text{ BrO}_{(aq)} \longrightarrow \text{BrO}_{3(aq)} + 2 \text{ Br}_{(aq)}$ has a rate constant of $5.61.10^{-2} \text{ mol}^{-1}.\text{L. s}^{-1}$ to 25°C . It is assumed that this reaction allows for an

- 1) What is the order of reaction to the BrO hypobromite ion?
- 2) The starting point is a solution containing BrO ions at the concentration 5.0.10⁻²mol. L⁻¹.
- -Calculate half reaction time.
- -Determine the composition of the solution at t = 3 min.
- -By what time will 75% of the hypobromite ions have been consumed?