Series N°3

Exercise 1:

Treatment of compound A with hot sodium hydroxide leads to the formation of two products: **B** (major) and **C** (minor).

- 1) Given that the reaction rate follows $V = [A][OH^-]$, what type of reaction is this?
- 2) Propose the mechanism accounting for the formation of compounds B and C, including their configuration.
- 3) Justify why **B** is the major product.

Exercise 2:

I) The preparation of n-butane can be achieved through several reactions, as outlined below. Provide the structures of compounds A, B, C, D, and E.

A (Bromo derivative)
$$2 \text{ Na}$$
 $n\text{-butane}$

B (Ketone) $n\text{-butane}$

C (Alkene) $n\text{-butane}$

B (Iodo derivative) $n\text{-butane}$

Anhydrous ether $n\text{-butane}$

II) Upon treatment of 2-bromo-3-methylbutane with sodium ethoxide, three compounds were isolated: two isomeric hydrocarbons **A** and **B** (molecular formula C₅H₁₀) and a third compound C ($C_7H_{16}O$).

Determine the structures of A, B, and C, given that A was obtained in fourfold greater quantity than **B**.

Exercise 3:

Complete the reactions below by providing the structures of compounds A, B, C, and D.

he reactions below by providing the structures of compounds A, B, C, at
$$\frac{NaNH_2}{A}$$
 A $\frac{H_2}{Pd/C}$ C $\frac{Pd/C}{Pd/BaSO_4}$

Exercise 4:

Complete each of the following reactions:

a)
$$+ HNO_3 \xrightarrow{H_2SO_4}$$
 ? e) $H_3COC \xrightarrow{CN} + Cl_2 \xrightarrow{AlCl_3}$? b) $H_3C \xrightarrow{C} + Br_2 \xrightarrow{FeBr_3}$? c) $+ SO_3 \xrightarrow{H_2SO_4}$? f) $+ ? \xrightarrow{?} \bigcirc$ $+ ? \xrightarrow{?} \bigcirc$ d) ? $+ KMnO_4 \xrightarrow{\ThetaOH} \bigcirc$ $+ CO_2H$

Exercise 5:

Identify the compounds denoted by letters in the following reaction sequences:

$$\underline{A} \xrightarrow{H} \underline{\Theta} \underline{B} + H_2O ; \underline{B} + Br_2 \xrightarrow{\underline{C}} \underline{G} \xrightarrow{H} \underline{O} \underline{O} + 2 H_2O + 2 \overline{Br} \underline{O}$$

$$\underline{D} + \overline{N}H_2 \xrightarrow{\underline{E}} \underline{E} + NH_3 ; \underline{E} + Br \xrightarrow{\underline{C}} \underline{C} \xrightarrow{\underline{H} \underline{O} | \underline{O} |} \underline{F} + \overline{Br} \underline{O}$$

$$\underline{B} \xrightarrow{\underline{1. O_3}} \underline{C} \xrightarrow{\underline{C} H_3} + H - CHO$$

Exercise 6:

Identify the compounds labeled with letters in the following reaction sequences:

a)
$$(H_3C)_4C + Br_2 \xrightarrow{hv} A_1 \xrightarrow{Mg} B_1 \xrightarrow{CO_2} C_1 \xrightarrow{H_3O} D_1$$
b) $H_3C-C \equiv CH + C_2H_5MgBr \longrightarrow A_2 \xrightarrow{propanone} B_2 \xrightarrow{H_3O} C_2$
c) $CH_3CH_2CH_2OH + PBr_3 \longrightarrow A_3 \xrightarrow{Mg} B_3 \xrightarrow{propanone} C_3 \xrightarrow{H_3O} D_3$
d) $C \equiv N \xrightarrow{Ethylene} A_4 \xrightarrow{C \equiv N} B_4 \xrightarrow{H_3O} C_4$
e) $CH_3CH(CH_3)CH_2OH \xrightarrow{H_2SO_4} A_5 \xrightarrow{HBr} B_5 \xrightarrow{Mg} C_5 \xrightarrow{Ethylene} Oxide Ox$