University of Djillali Bounaama Khemis Miliana Faculty of Matter Sciences and Computer Science Department of Chemistry

Séries N°2

Exercise 1:

Indicate the type and mechanism of the reactions below:

1
$$CH_3$$
 − Br + OH^{Θ} − CH_3 − OH + Br^{Θ}

$$4 \quad CH_3 - CH_3 - CH_3 - CH_2 + H_2O + CI^{\Theta}$$

$$CH_3 - CH_3 - C$$

5
$$CH_3$$
- CH = CH_2 + HBr \longrightarrow CH_3 - CH - CH_3 \downarrow Br

Exercise 2:

Consider molecule A: bromo-2 -phenyl-2-butane.

The following competitive reactions are carried out, considering the stereoisomer of A with the chiral center 2S.

(a)
$$A + CH_3CH_2O^- \longrightarrow Br^- + Y$$

(b) $A + CH_3CH_2O^- \longrightarrow Br^- + X + X + CH_3CH_2OH$

Experimental study shows that the rate expression for these two reactions is v=k [A]

- 1) Detail the mechanism of reaction (a).
- 2) The product Y obtained is an equimolar mixture of 2S and 2R, why?
- 3) Detail the mechanism of reaction (b) and represent the expanded formulas X and Y, specifying their configuration if applicable.

Exercise 3:

I) Consider compound A:

- 1) How many asymmetric carbons does this compound contain and how many stereoisomers are expected?
- 2) Represent the 2S-3S diastereoisomer using the same convention.

- **II**) Treat compound B with the 2S-3S configuration with sodium hydroxide diluted in a polar aprotic solvent.
 - 1) What type of reaction is this?
 - 2) What is the major product C obtained? Give the reaction mechanism and deduce the steric consequences.
- **III**) When compound B is treated with concentrated sodium hydroxide in a slightly polar medium, a compound D is obtained in addition to compound C. This product D results from an elimination reaction.
 - 1) Specify the mechanism for the formation of D and give the geometry of this compound.
 - 2) What rule governs this elimination?

Exercise 4:

Consider the compound A (bromo-1-methyl-2-cyclohexane):

- Determine the absolute configuration of the asymmetric carbon atoms in A.

A is treated with hot sodium ethoxide at 55°C. The experiment shows that the reaction rate is proportional to the concentration of ethoxide ion.

- 1) What type of reaction is this? Explain.
- 2) Recall the Saytzeff rule. What major product B should be obtained by applying this rule in the previous reaction?
- 3) What would be the minor product C obtained? Name B and C.

Exercise 5:

Consider the following molecule, denoted as A:

- 1) Name this molecule specifying which diastereoisomer it is.
- 2) Provide the structural formula and name the products that can be obtained by the action of HBr on molecule A.
- 3) How many stereoisomers do each of the possible formed compounds have? Justify.
- 4) Which compound is formed predominantly? Justify.
- 5) Give the mechanism of the acidic hydration of A, represent and name the predominantly formed compound B.