
Chapter 3 Classification and studies of reactions

Introduction:

A chemical reaction is generally described by a chemical equation in which the reactants A and B undergo a chemical transformation and give rise to one or more products C and D and the experimental conditions on the arrow.

The substrate (A), the organic compound that undergoes the transformation, and the reagent (B), often inorganic

Example:

The writing of a reaction equation does not provide information about the different steps involved in the transformation of reactants into products. There can be several elementary steps and a number of reactive intermediates formed during the reaction.

A chemical reaction can be considered under three essential aspects:

- **Electronic aspect**: Breaking and forming of bonds.
- **Geometric or steric aspect**: Change in molecular configurations.
- **Energetic and kinetic aspect**: variation in the energy of the molecules and speed of transformation of the chemical system.

4.1. Classification of reactions:

Organic chemistry reactions have been subdivided into four major categories. They are based on how substrates are transformed into products.

4.1.1. Substitution reactions: where one atom or group of atoms is replaced by another atom or group of atoms.

$$Y: + -\stackrel{\mid \delta_{+} \quad \delta_{-}}{\stackrel{\mid \delta_{-} \quad }{\stackrel{\mid \delta_{-} \quad }{\stackrel{\mid$$

Nucleophilic reagent

Substrate

Product Leaving group

Example:

4.1.2. Addition reactions: generally on unsaturated molecules.

$$C = C + Y - Z - Y - C - C - Z$$
Substrate Reactant intermediate Product

Example:

4.1.3. Elimination reaction: atoms are lost from a molecule and a multiple bond appears.

Example:

4.1.4. Transposition (or rearrangement) reactions: one or more atoms change position

$$C = C$$

$$C = C$$
Substrate
$$C = C$$
Product

Example:

4.2. Electronic Aspect of Reactions:

4.2.1. Bond Breaking:

In the initial stage of a chemical reaction, there is typically a bond breaking with the formation of a reaction intermediate .

The breaking of a covalent bond can occur in two different ways:

A. Homolytic cleavage: symmetrical cleavage of the covalent bond (formation of radicals). This cleavage is initiated, most often, by UV radiation.

Example:

B. Heterolytic cleavage: asymmetric cleavage of the covalent bond (passage through ionic intermediaries: cations and anions). Two oppositely charged ions are formed. If A^+ is C^+ , the ion is a **carbocation** and if B^- is C^- , the ion is a **carbanion**.

$$\begin{array}{c}
A \longrightarrow B \\
\hline
Appearance of charges
\end{array}$$
Heterolytic cleavage
$$\begin{array}{c}
A \longrightarrow A \\
\hline
A \longrightarrow B \\
\hline
Cation and anion
\end{array}$$

4.2.2. Reaction intermediates:

Reaction intermediates are chemical species that form between two elementary steps; they are very unstable and have a very short life.

These chemical species are completely consumed at the end of the reaction, so they do not appear in the stoichiometric equation.

4.2.2.1. Free radicals:

A. Formation

Result from thermal pathways in the presence of peroxides or through photochemical pathways.

B. Stability

Their stability is similar to that of (C^+) , the effects (+I, +M) can stabilize them by reducing their electronic deficit.

R
$$\sim$$
 C \sim R \sim C \sim P \sim Prim \sim H₂C-CH=CH₂

4.2.2.2. Carbocations: These are cations whose positive electronic charge is carried by a carbon atom.

A. Formation:

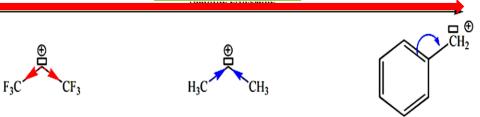
Carbocations can be formed by:

Solvolysis

• The addition of a proton to a double bond

$$H_3C$$
— CH = CH — C_6H_5 + H $^{\textcircled{+}}$ — \longrightarrow H_3C — CH_2 — CH — C_6H_5

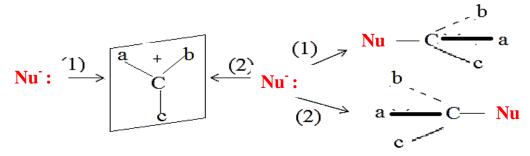
• Attack of a halogen by a Lewis acid:


B. Stabillity:

Inductive or donor mesomeric effects (+I, +M) can stabilize them by reducing their electronic deficit.

$$R \longrightarrow C \oplus R > R \longrightarrow C \oplus R > R \longrightarrow C \oplus H > CH_3$$
ter R sec H prim H $\rightarrow CH_3$
Increasing stability

A carbocation stabilized by mesomerism is all the more stable as it has more mesomeric forms.


$$H_{3}C - \underline{\underline{O}} + H_{3}C - \underline{\underline{O}} + \underline{\underline{O}}$$

Some unstable carbocations evolve to a stable state by rearrangement of the molecule.

C. Reactivity:

Since the carbocation is electrophilic (positive charge), a nucleophile can attack it either from one side of the plane or the other, which can have an influence on the stereochemistry of the product obtained.

 $a \neq b \neq c \neq Nu \longrightarrow (A)$ and (B) form an enantiomeric pair and the mixture is **racemic**.

4.2.2.3. Carbanions: these are anions whose negative charge is carried by a carbon atom. They have a tetrahedral geometry and therefore sp3 hybridization.

A. Formation:

Carbanions can be formed by:

• Ionization of an organometallic

$$CH_2Li$$
 Solvent CH_2 CH_2

• By removal of a proton by a base

• From organometallic compounds

$$R- MgX \longrightarrow R^{-} + MgX^{+}$$

• From an alkyne

$$R \quad \overline{\in} \quad C \quad H + NaNH_2 \longrightarrow R \quad -C \quad \overline{=}C : Na^+ + NH_3$$

B. Stabillity:

The donor effect (+I) increases the electron surplus and destabilizes the species.

• The attracting inductive effect (-I) decreases reactivity → stability increases.

$$X \xrightarrow{X} > X \xrightarrow{C} \xrightarrow{C} > X \xrightarrow{H} > CH_3$$

Example:

$$CI-CH_{2}-C + H > H_{3}C-C + H$$

$$F_{3}C-C\Theta > F-C\Theta > H-C\Theta > H_{3}C-C\Theta > H_{3}C-C\Theta > H_{3}C-C\Theta$$
Increasing stability

• Mesomeric effect: stabilizes the species

$$\begin{bmatrix} H_2 \overset{\ominus}{\mathsf{C}} & \overset{\ominus}{\mathsf{C}} & \overset{\ominus}{\mathsf{H}_2} & \overset{\ominus}{\mathsf{C}} & \overset{\Box}{\mathsf{C}} & \overset{\Box}{\mathsf{C}}$$

C. Reactivity:

Carbanions react at electron deficient sites, such as: carbocation, ketones and Lewis acids.

4.2.3. Electrophilic and Nucleophilic Reagents: Lewis Acids and Bases

4.2.3.1. Electrophilic reagents: these are reagents poor in electrons.

- They can be electrically neutral: molecules whose central atom has an electron deficiency: BF₃, AlCl₃, FeCl₃.
- They can be charged, in the form of cations

$$-\mathbf{X}^+$$
; $-\mathbf{NO}_2$; $-\mathbf{C}^+$

During a reaction, the electrophile (electron deficient) is attacked by an electron-rich center (nucleophile).

4.2.3.2. Nucleophilic reagents: These are reagents rich in electrons. Carbanions have a saturated and free atomic orbital and are called Lewis bases.

• They can be electrically neutral: molecules whose central atom has one (or more) free doublet(s)

• They can be negatively charged (anions):

Anions are more nucleophilic than the corresponding neutral molecules.

4.3. Geometric or steric aspect (Reaction orientation or selectivity):

This aspect relates to the influence of configurations, conformations, or even just steric hindrances during the reaction.

4.3.1. Regioselectivity:

A reaction is said to be regioselective if, when it can produce two or more constitutional isomers from a substrate with multiple potential reactive sites, it predominantly yields one of them.

Example:

Stereoselectivity:

A reaction is said to be stereoselective if, when it could potentially produce several stereoisomeric products, it predominantly yields certain ones.

Example:

$$Ph$$
 + H^{\oplus} $-H_2O$ Ph E Ph $5%$

$$+ Br_{2} \longrightarrow H^{W}$$

$$+ Br_{2}$$

$$+ Br_{3}C$$

$$+ Br$$

Solvents:

The role of the solvent is multiple in chemistry. It can be used first and foremost to dissolve the reagents involved in a chemical reaction and facilitate the encounter of reacting molecules.

There are 2 classes of solvents:

Non-polar solvents: These solvents are characterized by a zero dipole moment: Benzene (C_6H_6) , toluene $(C_6H_5-CH_3)$, carbon tetrachloride (CCl_4) , hydrocarbons (hexane, cyclohexane)... Since they are uncharged, they do not solvate the ions in the reaction medium.

Polar solvents: they are divided into 2 groups:

• **Protic solvents:** they have at least one hydrogen atom bonded to a heteroatom (O, N, S...) as in water (H-O-H), alcohols (R-O-H). Due to the polarization of the bonds (H-O, H-N, H-S...), these mobile protons are capable of forming hydrogen bonds with molecules carrying lone pairs or negative charges.

• **Aprotic solvents:** they contain atoms with free pairs but do not have mobile hydrogen: the hydrogen atoms are exclusively linked to carbon atoms: