Séries N°1

Exercise 1:

- I) Specify for each of the following groups the nature of the electronic effects (inductive and/or mesomeric).: -OCH₃, -COCH₃, -COCH₃, -OCOCH₃, -NH₂, -NO₂, -NHCOCH₃,-NEt₂, -N⁺(CH3)₃, -CCl₃, -CH₃.
- **II**) Provide all the resonance forms of the following molecules:

Exercise 2:

- I) Rank the following molecules in order of increasing acidity, justifying your choice:
- 1) CH₃OH, (CH₃)₂CHOH, ClCH₂CH₂OH, CF₃CH₂OH, CF₃CH₂CH₂OH
- 2) CH₃-COOH, (CH₃)₃C-COOH, ClCH₂-COOH, Cl₃C-COOH.
- **II**) Rank the following 5 compounds in order of decreasing pKa:

Exercise 3:

1) Assign the two pKa values of 10 and 16 to the following two compounds:

2) Consider the mononitrated, dinitrated, and trinitrated derivatives of phenol, represented below:

OH HO NO₂

$$O_{2}N$$

$$O_{1}$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{3}N$$

$$O_{2}N$$

$$O_{3}N$$

$$O_{4}N$$

$$O_{5}N$$

$$O_{5}N$$

Assign to each compound the corresponding pKa value: 1.02; 4.01; 7.14; 8.35. Justify. Estimate the approximate pKa value of orthonitrophenol.

Exercise 4:

1) Rank the following bases in order of increasing basicity:

 $C_6H_5NH_2$; NH_3 ; $(C_2H_5)_2NH$; $C_2H_5NH_2$.

2) Rank the following compounds in order of decreasing basicity, justifying your answer.

$$\mathbf{H_{2}N}$$
 $\mathbf{X} = OCH_3$; Cl ; CH_3 ; NO_2 ; $COOH$

Exercise 5:

Among the following compounds, indicate which ones are aromatic.

