Djilali BOUNAAMA University of Khemis Miliana Matter and Computer Sciences Faculty Physics Department

Series N°4

Exercise 1

A block of ice with a mass of m=10Kg at a temperature of T_1 =263K is immersed in a large water tank whose temperature is equal to T_2 = 288K.

- 1. Calculate the entropy change of the ice.
- 2. Calculate the entropy change of the tank.
- 3. Calculate the entropy change of the universe. Conclude.

Data:
$$c_p$$
 (water) = 4,18 J/g.K, c_p (ice) = 2,09 J/g.K, c_p (ice) = 273K

Exercise 2

A piece of iron with a mass of $m_{Fe} = 1000g$ and a heat capacity of cp (Fe) = 0.11 Cal/g.K at a temperature of $T_{Fe} = 77^{\circ}\text{C}$ is introduced into a lake at a constant temperature of $T_1 = 7^{\circ}\text{C}$.

- 1. Calculate the entropy change of the iron.
- 2. Calculate the entropy change of the external environment.
- 3. Calculate the total entropy change and conclude.

Exercise 3

Consider the reaction that leads to the following equilibrium:

$$C_2H_4(g) + H_2O(g) \longrightarrow C_2H_5OH(g)$$

- 1. Calculate the standard free enthalpy of the reaction at 25° C: is it favorable to the formation of C_2H_5OH (g)?
- 2. Calculate the equilibrium constant at 25°C.
- 3. Calculate the equilibrium constant at 573K, assuming that the ΔH° of the reaction is constant between 298K and 573K.
- 4. What factors must be acted upon, and how, to promote the formation of C₂H₅OH (g)?

Data: At P=1atm and T=298K

Compounds	$\Delta H_{f}^{\circ}(kJ/mol)$	$\Delta G_{f}^{\circ}(kJ/mol)$
$C_2H_4(g)$	52.28	68.12
$H_2O(g)$	-241.83	-228.59
$C_2H_5OH(g)$	-235.08	-168.45

Exercise 4

The industrial production of chlorine occurs at 298K as follows:

$$4HCl(g) + O_2(g) \longrightarrow 2Cl_2(g) + 2H_2O(l)$$

- 1. Express the equilibrium constant Kp as a function of the partial pressures.
- 2. Calculate the enthalpy and free enthalpy changes of the reaction and conclude.
- 3. Deduce the value of the equilibrium constant Kp at 298K.
- 4. Carrying out the above reaction at 900K, we then have:

$$4HCl(g) + O_2(g) \longrightarrow 2Cl_2(g) + 2H_2O(g)$$

- a. Express Kp as a function of the partial pressures.
- b. Initially, with 3 moles of HCl and 2 moles of O_2 , and calling x the number of moles of O_2 reacted, express the partial pressure of Cl_2 as a function of x and the total pressure P at equilibrium.
- c. Calculate the total pressure P, given that K'p = 0.28 and x = 0.47.
- d. How must P vary to increase Cl₂ production?

<u>Data</u>: ΔH°_{f} (HCl(g)) = -92,38 kJ/mol, ΔH°_{f} (H₂O(l)) = -286,87 kJ/mol, ΔS°_{R} = -365,24 J/K,

Exercice 5

In the gas phase, the oxidation of sulfur dioxide (SO_2) leads to the formation of sulfur trioxide (SO_3) , according to the following reaction:

- $2 SO_2(g) + O_2(g) \implies 2 SO_3(g)$
- 1. Calculate at $T_1 = 298K$, ΔH°_R , ΔS°_R , and ΔG°_R .
- 2. The temperature is raised to $T_2 = 750$ K. Then, calculate at T_2 the free enthalpy change (ΔG°_R) for the oxidation reaction of $SO_2(g)$.
- 3. In which direction does the equilibrium shift if:
- a. The temperature is decreased.
- b. The total pressure is increased.
- c. SO₃ (g) is added.
- d. Oxygen (O₂) is removed.

Data: At P=1atm and T=298K.

Compounds	$\Delta H^{\circ}_{f}(KJ/mol)$	S° (J/K. mol)	Cp (J/K. mol)
$SO_2(g)$	-296.8	248.0	47.8
$O_2(g)$	0	205.0	31.6
$SO_3(g)$	-395.7	256.4	65.3

Exercise 6

Into an empty 6 L container, 2 moles of hydroiodic acid (HI) are introduced. The temperature is maintained at 627°C. The following equilibrium is established:

2HI (g)
$$\leftarrow$$
 I₂(g) +H₂(g)

At equilibrium, the sum of the partial pressures of iodine and hydrogen is equal to 6.15 atm.

- 1. Calculate the total pressure at equilibrium and the dissociation coefficient of HI, as well as the equilibrium constant Kp.
- 2. What would be the composition of the mixture at equilibrium if the initial mixture consisted of 2 moles of HI and 1 mole of I₂?

Are these results consistent with the qualitative predictions that could be made?