
Chapter 9:Calling External Programs 2025

Dr : Seddik KHERROUBI Page 1

Chapter 9:

Calling External Programs

 Chapter 9: Calling External Programs in Fortran

9.1 Introduction

Fortran allows interaction with external programs, enabling users to:

 Execute system commands.

 Call external scripts (Python, Bash, etc.).

 Integrate with external libraries (C, C++, etc.).

 Read and write data to external files for further processing.

This is particularly useful in scientific computing, where Fortran programs often need to

interact with tools such as MATLAB, Python, C, and Shell scripts.

9.2 Calling System Commands

Fortran provides a built-in function SYSTEM to execute shell commands.

9.2.1 Example: Running a Shell Command

 IMPLICIT NONE

 INTEGER :: status

 ! Execute a system command

 status = SYSTEM("ls -l") ! Lists files in Linux/Mac (use "dir" on Windows)

 ! Check the status of the command execution

 IF (status /= 0) THEN

 PRINT *, "Error executing command"

 ELSE

 PRINT *, "Command executed successfully"

 END IF

END PROGRAM call_system_command

 SYSTEM("command") executes the given shell command.

 Returns 0 if the command was successful, otherwise returns an error code.

Chapter 9:Calling External Programs 2025

Dr : Seddik KHERROUBI Page 2

9.2.2 Example: Running an External Python Script

PROGRAM call_python_script

 IMPLICIT NONE

 INTEGER :: status

 ! Run a Python script

 status = SYSTEM("python my_script.py")

 ! Check execution status

 IF (status /= 0) THEN

 PRINT *, "Python script execution failed"

 ELSE

 PRINT *, "Python script executed successfully"

 END IF

END PROGRAM call_python_script

9.3 Calling External Programs with Arguments

Sometimes, it is necessary to pass arguments to external programs.

9.3.1 Example: Running a Python Script with Arguments

PROGRAM call_python_with_args

 IMPLICIT NONE

 INTEGER :: status

 CHARACTER(LEN=100) :: command

 ! Construct command

 command = "python my_script.py 5 10"

 ! Execute command

 status = SYSTEM(command)

 ! Check status

 IF (status /= 0) THEN

 PRINT *, "Execution failed"

 ELSE

 PRINT *, "Execution successful"

 END IF

END PROGRAM call_python_with_args

 The Fortran program calls my_script.py and passes 5 and 10 as arguments.

 The Python script would then receive these numbers as input.

Chapter 9:Calling External Programs 2025

Dr : Seddik KHERROUBI Page 3

9.4 Calling C/C++ Functions from Fortran

Fortran can call C or C++ functions using the ISO_C_BINDING module.

9.4.1 Writing a C Function

Create a C file my_c_function.c:

c

#include <stdio.h>

void print_message() {

 printf("Hello from C!\n");

}

Compile it as a shared library:

gcc -c -fPIC my_c_function.c

gcc -shared -o libmy_c_function.so my_c_function.o

9.4.2 Calling the C Function in Fortran

PROGRAM call_c_function

 USE, INTRINSIC :: ISO_C_BINDING

 IMPLICIT NONE

 INTERFACE

 SUBROUTINE print_message() BIND(C)

 END SUBROUTINE print_message

 END INTERFACE

 ! Call the C function

 CALL print_message()

END PROGRAM call_c_function

To compile and link:

 gfortran call_c_function.f90 -L. -lmy_c_function -o call_c_function.out

 The ISO_C_BINDING module allows Fortran to call C functions.

 The BIND(C) attribute ensures compatibility with C.

9.5 Calling Fortran from C

We can also call Fortran functions from C.

Chapter 9:Calling External Programs 2025

Dr : Seddik KHERROUBI Page 4

9.5.1 Writing a Fortran Function

Create my_fortran_function.f90:

SUBROUTINE hello_from_fortran() BIND(C)

 IMPLICIT NONE

 PRINT *, "Hello from Fortran!"

END SUBROUTINE hello_from_fortran

Compile it:

gfortran -c -fPIC my_fortran_function.f90

gcc -shared -o libmy_fortran_function.so my_fortran_function.o

9.5.2 Calling Fortran from C

Create call_fortran_from_c.c:

#include <stdio.h>

void hello_from_fortran();

int main() {

 printf("Calling Fortran function from C...\n");

 hello_from_fortran();

 return 0;

}

Compile and link:

gcc call_fortran_from_c.c -L. -lmy_fortran_function -o call_fortran

9.6 Using File-Based Communication

Another method for calling external programs is file-based communication.

9.6.1 Example: Writing Data for a Python Script

PROGRAM write_data

 IMPLICIT NONE

 INTEGER :: i

 REAL :: x, y

 OPEN(10, FILE='data.txt', STATUS='REPLACE')

 ! Generate data

 DO i = 1, 100

 x = REAL(i) / 10.0

 y = SIN(x)

 WRITE(10,*) x, y

 END DO

Chapter 9:Calling External Programs 2025

Dr : Seddik KHERROUBI Page 5

 CLOSE(10)

 PRINT *, "Data written to file."

END PROGRAM write_data

Python Program (plot_data.py):

import numpy as np

import matplotlib.pyplot as plt

Read data from file

data = np.loadtxt("data.txt")

x, y = data[:, 0], data[:, 1]

Plot data

plt.plot(x, y, label="Fortran Data")

plt.xlabel("X-axis")

plt.ylabel("Y-axis")

plt.legend()

plt.show()

Running write_data first writes a file, then plot_data.py reads and plots it.

9.7 Summary and Best Practices

Method Use Case Advantages Limitations

SYSTEM Calling shell commands Simple and direct OS-dependent

Calling

Python

Interfacing with Python

scripts
Easy to extend Requires Python

Calling

C/C++
Using external libraries Efficient

Requires

ISO_C_BINDING

File-

based

Exchanging data between

programs

Works across

languages
File I/O overhead

 Use SYSTEM for quick OS commands.

 Use ISO_C_BINDING for high-performance computing.

 Use file-based communication if data exchange is needed.

9.8 Conclusion

 Fortran can call system commands, external programs, and scripts.

 It can integrate with C/C++ using ISO_C_BINDING.

 It can exchange data via files for interoperability with other languages.

