
Chapter 7:Matrices (Arrays) 2025

Dr: Seddik KHERROUBI Page 1

Chapter 7:

Matrices (Arrays)

7.1 Introduction:

In Fortran programming, matrices, or arrays, play a key role in processing data and

performing complex calculations. They allow collections of values to be stored in an

organized form, facilitating operations on multiple data sets. This chapter will introduce you

to the essential concepts of matrices in Fortran, including their declaration, initialization, and

common operations you can perform.

We'll also cover array dimensions, manipulation techniques, and how to leverage

matrices to solve mathematical and scientific problems. Whether you're working on

simulations, data analysis, or advanced algorithms, mastering matrices in Fortran is essential

for optimizing your programs and improving their efficiency.

7.2 Definition:

 An array is a set of elements of same type, spotted At means of indices whole. THE elements of

a painting are tidy according to A Or several axes called dimensions of painting. In THE paintings

has a dimension (Who allow of represent for example vectors in the mathematical sense of the

term), each element is identified by a single integer, but Fortran accepts arrays of up to 7 dimensions,

Or each element East designated by a 7 clues.

A one-dimensional array is sometimes called a vector. It can be represented as shape next :

L(1) L(2) L(3) L(4) …………………… L(n)

- Dimension of painting : 1

- Size of painting : n

- THE L(i), i=1, 2, …, n (must be of even kind)

7.2.1 Statement of the paintings :

As with simple variables, there is the problem of the type of the array, that is to say of its

elements. All elements of the array are of the same type. If the name of the array appears in a typical

order (REAL, INTEGER, ….) the problem is solved. Otherwise it is that the table appeared in a

DIMENSION order, and the first letter lifts all confusion, if this letter is I, I, K, L, M or n THE

painting East entire, Otherwise real.

Examples :

REAL, DIMENSION :: A (10), B (15 , 5), C (3, 7, 9)

These statements indicate :

 A : is A painting real has 1 dimension, of 10 elements (vectors)

Chapter 7:Matrices (Arrays) 2025

Dr: Seddik KHERROUBI Page 2

 B : is a 2-dimensional real array, with 15 rows and 5 columns 9(matrices)

 J is a 3-dimensional real array equal to 3, 7 and 9

7.2.2 Terminology of the paintings :

– Rank of a painting : number of his dimensions

– Extent (extent) of a painting according to a of his dimensions : number of elements in this

dimension

– Bounds of a painting according to a of his dimensions : boundaries lower and superior of the

clues In this dimension. There terminal inferior by default worth 1.

– Profile (shape) of a painting : vector whose THE components are THE expanses of table

according to his dimensions ; its size East THE rank of painting.

– Size of an array: total number of elements that constitute it, i.e. the product of the elements of

vector that constitutes his profile.

(two paintings are said conforming (conformable) if they have THE even profile .)

7.3 declaration of an array:

– There declaration of an array is done using the DIMENSION attribute which indicates the profile

of the table, but also possibly the terminals, separated by the symbol " : ".

Examples :

REAL, DIMENSION X(15) REAL, Y DIMENSION (1:5,1:3) REAL, DIMENSION Z (-1:3, 0:2)

THE painting X East of rank 1, Y And Z are of rank 2.

The extent of X East 15, Y And Z have a extent of 5 and 3.

The profile of X is the vector (/ 15 /), that of Y and Z is the vector (/ 5,3 /). The size of the paintings

X, Y And Z is 15.

The paintings Y And Z are conformants .

7.4 Building and displaying a table:

To construct a 1-dimensional array, we can list its elements and surround them with (/ ... /) .

Here are some examples:

* (/ 1, 2, 3 /) produces the array [1 , 2 , 3]

(/ (i,i =1,100) /) and (/ (i,i =1,100,2) /) produce the array [1 , 2 , . . . , 100] (the array of odd

numbers between 1 and 100) respectively.

* We can combine this as in the example (/ (0 ,(j,j =1,5),0, i=1,6) /) , which makes

the table of size 42, made up of 6 times the sequence 0 , 1 , 2 , 3 , 4 , 5 , 0.

* The command reshape (X ,(/ m,n /) allows to create from a linear table of dimension mn a

rectangular table of size m× n , by successively filling the first line, then the second, ...

Thus reshape ((/ ((i+ j,i =1,100),j=1,100) /),(/100,100/)) constructs the addition table of the

first 100 integers.

Examples:

 Program

 Implicit none

 Real, dimension(10) :: x

 Integer : : i

 Do i = 1, 10

 x(i) = i**2 ! Assign values to each element of the array

Chapter 7:Matrices (Arrays) 2025

Dr: Seddik KHERROUBI Page 3

 Dnd do

 Do i = 1, 10

 Write(*,*) "x(", i , ") = ", x(i) ! Print the elements of the array

 End do

 End

7.4 RESHAPE FUNCTION:

 The RESHAPE function in Fortran is used to change the shape of a multidimensional array.

This function takes two arguments: the original array and the desired new shape. The original array is

rearranged to match the new shape, filling the elements in the order they are stored in memory.

 The array's fill when changing its shape depends on the order in which the elements are stored

in memory. In Fortran, the default storage order for multidimensional arrays is the column-major

convention, also called FORTRAN order. This means that the elements are stored in columns, so that

the elements in the first column are stored contiguously, then the elements in the second column, and

so on.

 When the RESHAPE function is called with a new number of dimensions or a new shape for the

array, the compiler calculates the new size and shape of the array. Then, it fills the array elements

in storage order, taking the elements from the original array in the corresponding order.

 For example, if the original array has the shape (3, 4) and the storage order is FORTRAN, so that

the elements are stored in columns, the array can be thought of as follows:

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2) A(1,3) A(2,3) A(3,3) A(1,4) A(2,4) A(3,4)

 If the RESHAPE function is called with the new shape (6, 2), the compiler will fill the new array

by taking the elements from the old array in the following order:

A(1,1) A(2,1) A(3,1) A(4,1) A(5,1) A(6,1) A(1,2) A(2,2) A(3,2) A(4,3) A(5,2) A(6,2)

 Noticed : If the new shape specified for the array does not match the total size of the original array,

a compilation or runtime error may occur.

EXAMPLES:

 a = RESHAPE([2.0,3.0,1.0,0.0,-1.0,4.0,-2.0,5.0,2.0], [3,3])

 Writing a = RESHAPE([2.0,3.0,1.0,0.0,-1.0,4.0,-2.0,5.0,2.0],[3,3]) in Fortran creates an array

a of dimensions 3x3 and stores the elements in it

2 0 2

3 1 5

1 4 2

 In this case, the elements [2.0,3.0,1.0] correspond to the first column of a , the elements [0.0,-

1.0,4.0] correspond to the second column, and the elements [-2.0,5.0,2.0] correspond to the third

column. The new array a will therefore have the following form:

7.5 Dynamic allocation

 7.5.1 Definition:

 Dynamic memory allocation (or dynamic memory allocation) is a computer process used to

reserve memory space in the heap of a running program. This technique allows the creation of

variables, arrays, and data structures of unknown or variable size, unlike static allocation, which

requires knowing the size in advance.

Chapter 7:Matrices (Arrays) 2025

Dr: Seddik KHERROUBI Page 4

 In programming language, allocatable is a variable type that allows you to declare a variable

that can be dynamically allocated. The dynamic allocation operation (allocate) allows you to reserve

memory space for this variable, while the deallocate operation allows you to free this space and make

it available for other uses.

 Here is an example of Fortran 90 code for dynamically allocating one-dimensional arrays

using the allocate syntax :

program allocation_tab

implicit none

integer , allocatable :: tab(:)

integer : : n, i

write (*,*) "Enter the size of the array:"

read(*,*) n

allocate (tab(n))

do i = 1, n

tab(i) = i

end do

write (*,*) "Contents of the table:"

write (*,*) tab

deallocate (tab)

End

 In this example, we declare an array of integers tab with the syntax integer , allocatable ::

tab(:) . We then ask the user to enter the size of the array using read (*,*)n . We then use the

dynamic allocation operation allocate (tab(n)) to allocate memory for the array tab with size n . We

then initialize the array with increasing values from 1 to n , before displaying its contents with write (

,)tab . Finally, we free the memory allocated for the array with deallocate (tab) .

 It is also possible to dynamically allocate multi-dimensional arrays in Fortran 90. Here is an

example code for a two-dimensional array:

program allocation_dyn_tab_2d

implicit none

integer , allocatable :: tab(:,:)

integer : : n, m, i , j

write (*,*) "Enter the dimensions of the array:"

read(*,*) n, m

allocate(tab(n,m))

do i = 1, n

do j = 1, m

tab(i,j) = i *j

end do

end do

write(*,*) " Contents of the array: "

Chapter 7:Matrices (Arrays) 2025

Dr: Seddik KHERROUBI Page 5

do i = 1, n

write(*,*) (tab(i,j), j = 1, m)

end do

deallocate (tab)

end program allocation_dyn_tab_2d

 In this example, we declare a two-dimensional integer array tab with the syntax integer ,

allocatable :: tab(:,:) . We then ask the user to enter the dimensions of the array with read (*,*) n, m

. We then use the dynamic allocation operation allocate (tab(n,m)) to allocate memory for the array

tab with dimensions n and m . We then initialize the array with values equal to i*j , before displaying

its contents with write (*,*) (tab(i,j), j = 1, m) . Finally, we free the memory allocated for the array

with deallocate (tab) .

Notes :

REAL, DIMENSION :: V(100)

 It is important to note that the size of the memory area reserved for the array or vector v depends

on the size of the elements in the array. If you declare v as an array of integers, each element will

typically take up 4 bytes of memory (32 bits) on most architectures, and so the total size of the memory

area reserved for v would be 400 bytes. If you declare v as an array of reals (or floats), each element

will typically take up 8 bytes of memory (64 bits) on most architectures, and so the total size of the

memory area reserved for v would be 800 bytes.

 Examples : tab (100,100)

8 for a 32-bit operating system, the reservation is (100x100x4=40000 bytes

9 for a 64-bit operating system, the reservation is (100x100x8=80000 bytes

7.6 Options for alignment:

ADVANCE='no': Prevents moving to the next line after each element during display.

For example, write(*, '(F6.2)', ADVANCE='no') displays the elements on the same line.

These formatting options and specification can be used in the write statement to control the

display of matrices on the screen in Fortran .

Example 1 (Left alignment):

program display_matrix

 implicit none

 integer : : i , j

 integer , parameter:: n = 3, m = 4

 real:: matrix(n, m) = reshape([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0,

12.0], [n, m])

 do i = 1, n

 do j = 1, m

 write(*,'(F6.2)', advance='no') matrix(i , j)

 end do

 write(*,*) ! Moves to the next line after each matrix row

 end do

 end program display_matrix

Chapter 7:Matrices (Arrays) 2025

Dr: Seddik KHERROUBI Page 6

 In this example, the elements of the matrix are displayed with a field width of 6

characters and 2 decimal places of precision. The advance='no' option is used to prevent

moving to the next line after each element, aligning the elements to the left.

Example 2 (Right alignment):

In this example, the elements of the matrix are displayed with a field width of 6 characters

and 2 decimal places of precision. The advance='no' option is used to prevent moving to the

next line after each element. Additionally, a string consisting of a space is added after each

element to align the elements to the right.

These examples illustrate how to use the advance='no' option in combination with format

specifications to align the elements of a matrix to the left or right during display. You can

adjust the formats and options according to your specific needs.

program display_matrix

 implicit none

 integer : : i , j

 integer , parameter:: n = 3, m = 4

 real:: matrix(n, m) = reshape([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0], [n,

m])

 do i = 1, n

 do j = 1, m

 write(*,'(F6.2, A)', advance='no') matrix(i , j), ' '

 end do

 write(*,*) ! Moves to the next line after each matrix row

 end do

end program display_matrix

7.6 Intrinsic Functions for Arrays:

In Fortran , there are several intrinsic functions that can be used to perform operations

on arrays. Here are some commonly used intrinsic functions :

1. SIZE(array [, dimension]) : This function returns the size of an array or a specific

dimension of an array. For example, SIZE(array) returns the total number of elements

in the array, while SIZE(array, dimension) returns the size of the specified dimension

of the array.

2. SHAPE(array) : This function returns the shape (dimensions) of an array as an array

of integers. For example, SHAPE(array) returns an array containing the sizes of each

dimension of the array.

3. RESHAPE(source, shape) : This function reshapes an array using a new shape

specified by the shape array. The total size of the source array must match the total

size of the resulting array.

Chapter 7:Matrices (Arrays) 2025

Dr: Seddik KHERROUBI Page 7

4. LBOUND(array [, dimension]) : This function returns the lower bound index of an

array or a specific dimension of an array. For example, LBOUND(array) returns the

lower bound index of the array, while LBOUND(array, dimension) returns the lower

bound index of the specified dimension of the array.

5. UBOUND(array [, dimension]) : This function returns the upper bound index of an

array or a specific dimension of an array. For example, UBOUND(array) returns the

upper bound index of the array, while UBOUND(array, dimension) returns the upper

bound index of the specified dimension of the array.

D. Reduction Operations on Arrays (sum, minimum, maximum, etc.):

Fortran also provides reduction operations that allow you to calculate aggregated quantities

from the elements of an array. Here are some commonly used reduction operations :

1. SUM(array [, dimension]) : This function calculates the sum of the elements of an

array or a specific dimension of an array.

2. MINVAL(array [, dimension]) : This function returns the minimum value among the

elements of an array or a specific dimension of an array.

3. MAXVAL(array [, dimension]) : This function returns the maximum value among the

elements of an array or a specific dimension of an array.

4. PRODUCT(array [, dimension]) : This function calculates the product of the elements

of an array or a specific dimension of an array.

5. COUNT(array [, dimension]) : This function counts the number of elements in an

array or a specific dimension of an array.

In Fortran , the keyword " allocatable " is used to declare arrays whose size can be

dynamically allocated during program execution. This allows creating arrays whose size can

vary based on the specific needs of the program.

The use of allocatable arrays offers several advantages:

1. Flexibility of size: Allocatable arrays allow defining arrays whose size can be

dynamically adjusted. This enables programmers to create arrays of variable size

based on the specific requirements of a given situation.

2. Memory efficiency: By using allocatable arrays, memory is allocated only when

necessary. This helps save memory by avoiding allocating space for large arrays that

wouldn't be fully utilized.

3. Reusing the same variable name: Allocatable arrays can be reallocated with different

sizes during program execution. This means that you can reuse the same variable

name for different array sizes, which can make the code more readable and modular.

Example:

Here's a simplified example to illustrate the use of " allocatable ":

Chapter 7:Matrices (Arrays) 2025

Dr: Seddik KHERROUBI Page 8

program allocatable_example

 implicit none

 integer , parameter :: n = 5

 real , allocatable :: array(:)

 allocate(array(n))

! Using the allocatable array

 array = [1.0, 2.0, 3.0, 4.0, 5.0]

! Reallocating the array with a new size

n = 10

 allocate(array(n))

! Using the reallocated array

 array = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

 deallocate (array)

end program allocatable_example

program table_sort

 implicit none

 integer , parameter :: n = 3

 integer:: A(n, n) = reshape([91, 22, 4, 56, 7, 9, 13, 8, 82], [n, n])

 integer : : i , j, temp

 ! Sort table A in ascending order

 do i = 1, n

 do j = 1, n-1

 if (A(j) > A(j+1)) then

 temp = A(j)

 A(j) = A(j+1)

 A(j+1) = temp

 endif

 end do

 end do

! Displaying the sorted table

 write(*,*) " Sorted array :"

 do i = 1, n

 do j = 1, n

 write(*,*) A(i , j)

 end do

 end do

end program table_sort
