Djilali BOUNAAMA University of Khemis Miliana Matter and Computer Sciences Faculty Physics Department

Series N°2

Exercise 1

The volume of a gas system (considered as an ideal gas) decreases by 0.5 L under a constant external pressure of 10 atm.

- 1) What is the work received by the system?
- 2) Express this work in: L.atm; Joules; Calories.

Exercise 2

We heat a container containing 6 g of hydrogen (assumed ideal gas) whose temperature rises from 15°C to 30°C, calculate:

- 1) The internal energy change of the gas during this heating.
- 2) The heat received by the gas, if the latter has provided work of 264 Joules.

Data: R = 8.314 J/mol.K; γ = 1.4

Exercise 3

Calculate the quantity of heat necessary to transform 500g of ice from -10 to 120°C into steam.

Exercise 4

One mole of an ideal gas is subjected to the following reversible transformations:

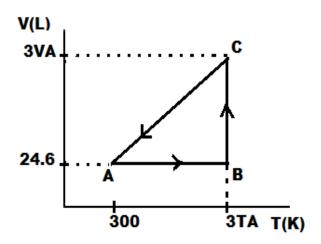
A-B transformation such that $\Delta U_{AB} = 0$ and $W_{AB} = -623$ cal.

B-C transformation such that $Q_{BC} = \Delta U_{BC}$.

- C-A transformation such that $W_{CA} = \Delta U_{CA}$.
- 1) Give the nature of each transformation.
- 2) Evaluate the variables P, V, T for each of the states A, B, C.
- 3) Represent the cycle on a Clapeyron diagram P = f(V).
- 4) Calculate in calories, the work (W), the heat (Q) and the internal energy change (ΔU) for each transformation and for the cycle.

<u>Data:</u> $P_A = 1.5$ atm, $V_A = 24.6$ L, R = 0.082 L.atm/mol.K = 8.314 J/mol.K = 2 cal/mol.K = 1.4

Exercise 5


One mole of ideal gas undergoes a reversible cycle of transformations from the initial state A (P_A= 1atm)

- -Isochoric heating to state B;
- -Isothermal compression up to $V_C = 2 V_B$ and $T_C = T_B = 2 T_A$;
- -Isobaric cooling to initial state. During this cycle the system provides work of 210,92 cal.
- 1) Express W_t (total work) as a function of T_A, deduce the value of T_A.
- 2) Determine the missing parameters of each state.
- 3) Represent the cycle on a Clapeyron diagram P = f(V).
- 4) Calculate the work, the quantity of heat, the internal energy change and the enthalpy change for each transformation and for the cycle.

<u>Data:</u> $c_p = 7$ cal/mol.K, $c_v = 5$ cal/mol.K

Exercise 6

One mole of an ideal gas undergoes a reversible cycle ABCA, represented graphically below in terms of T, V coordinates.

- 1) Determine the missing parameters for each state.
- 2) Identify the nature of each transformation.
- 3) Calculate, for each transformation, the heat quantity, the work, the internal energy change and the enthalpy change.