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Problem-Solving & Search Algorithms

CHAPTER II
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Solving a problem

▪ Intuitive steps by a human

• Model the current situation

• List possible solutions

• Evaluate the value of each solution

• Select the best option satisfying the goal

▪ How to efficiently browse the list of solutions ?

▪ Several problems can be solved by searching in a graph :

• Each node represents a state of the environment

• Each path through a graph represents a sequence of actions

• The solution: simply look for the path that best satisfies our performance measurement
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Problem-Solving

Example: Path-finding in a city

Find the best path between the 9th ave – 50th street to the 3rd ave -51st street
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Problem-Solving

Example: Google Maps
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Problem-Solving

Example: Package delivery
Initial state Goal
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Initial state Goal

Problem-Solving

Example: Chess game
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Initial state Goal

Problem-Solving

Example: N-Puzzle

Up Up Left Down Right
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Problem-Solving

Graph search problem
▪ Input:

• Initial node

• Goal function Goal(n) which returns True if the goal is achieved

• Transition function Transition(n) which returns the successor nodes of n

• Cost function c(n,n’) strictly positive, which returns the cost of going from n to n’

▪ Output:

• A path in the graph (nodes and edges)

o The path cost is the sum of all the edges cost in the graph

o There can be several goal nodes

➢ Challenges:

• Find a solution path

• Find an optimal path

• Quickly find a path (in this case the optimality is not important)
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Problem-Solving

A real world example: Find a path 
between two cities

• Cities: Nodes

• Paths between two cities: Edges

• Starting city: Initial node n0

• Roads between cities: Transition(n0) = (n3, n2, n1)

• Distance between cities: c(n0,n2) = 4

• Destination city: Goal(n) = True if n = n6 (n6 is the destination city)
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Search Algorithms

Any search problem is characterized by a starting situation and a goal to achieve and a 
search space:

▪ The search space is composed of the set of all possible states. 
▪ To determine possible operations to move from one state to another. 
▪ To determine a search strategy.

There are different strategies: 
▪ Uninformed (Blind):

o Breadth-first search 
o Depth-first search (and its variations)
o Uniform cost

▪ Informed:
o Best-first search, 

• Greedy best-first search, 
• A* algorithm
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➢ For a given node, explore the sibling nodes before exploring their children.

Breadth-First Search (BFS)
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Algorithme de recherche : Largeur d’abord

Breadth-First Algorithm:

1- Put the initial state node in a FIFO queue: OPEN

2- If n corresponds to the final state then Success

3- If OPEN is empty then Failure

4- Remove n from OPEN

5- If n has no successors then go to 3, otherwise: 

- Develop the successors of n

- Insert them into OPEN

- Establish chaining 

- Insert n into Closed (a queue containing the nodes already explored) 

6- If among the successors there are final states then Success, otherwise go to 3

Breadth-First Search
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1.Put 1 in the list. We get [1].

2.Remove the first element of the list (the 1) and add its successors 2, 3. We get [2,3].

3.Remove the first element of the list (the 2) and add its successors 4, 5. We get [3,4,5].

4.Remove the first element of the list (the 3) and add its successors 6, 7. We get [4,5,6,7].

▪ Tree traversal

Breadth-First Search
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Illustrative example : Path between two cities n0 and n6

Breadth-First Search
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1. Put n0 in the Open list. We get [n0].

▪ Illustration: 

Breadth-First Search



16

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add 

its successors n1, n2, n3. We get [n1, n2, n3].

▪ Illustration: 

Breadth-First Search
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1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add 

its successors n1, n2, n3. We get [n1, n2, n3].

3. Remove the first element of the list (the n1) and 

add its successors n5. We get [n2, n3, n5].

▪ Illustration:  

Breadth-First Search
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4. Remove the first element of the list (the n2) and 

add its successors n4. We get [n3, n5, n4].

▪ Illustration: 

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add 

its successors n1, n2, n3. We get [n1, n2, n3].

3. Remove the first element of the list (the n1) and 

add its successors n5. We get [n2, n3, n5].

Breadth-First Search
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5. Remove the first element of the list (the n3) and add its 

successors n2 ,n4. We get [n5, n4, n2(n3) , n4(n3) ].

▪ Illustration: 

4. Remove the first element of the list (the n2) and 

add its successors n4. We get [n3, n5, n4].

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add 

its successors n1, n2, n3. We get [n1, n2, n3].

3. Remove the first element of the list (the n1) and 

add its successors n5. We get [n2, n3, n5].

Breadth-First Search
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6. Remove the first element of the list (the n5) and add 

its successors n6. We get [n4, n2(n3), n4(n3), n6].
n6  Appears in OPEN 

then  Stop

Success

▪ Illustration: 

5. Remove the first element of the list (the n3) and add its 

successors n2 ,n4. We get [n5, n4, n2(n3) , n4(n3) ].

4. Remove the first element of the list (the n2) and 

add its successors n4. We get [n3, n5, n4].

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add 

its successors n1, n2, n3. We get [n1, n2, n3].

3. Remove the first element of the list (the n1) and 

add its successors n5. We get [n2, n3, n5].

Breadth-First Search
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Depth-First Search (DFS)

➢ For a given node, explore the first child node before exploring the sibling nodes.
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Depth-First Algorithm:

1- Put the initial state node in a LIFO stack: OPEN

2- If the stack is empty then Failure

3- Pop n

4- Develop the successors of n:

o If successors exist then 

- Push the successors 

- Establish the successor chaining 

- Put n in Closed

6- If among the successors there are final states then Success, otherwise go to 2

Depth-First Search
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We are using a stack data structure:

1.Put 1 into the stack. We get [1].

2.Remove the first element from the stack (1) and add its successors 2, 3. We get [2,3].

3.Remove the first element from the stack (2) and add its successors 4, 5. We get [4,5,3].

4.Remove the first element from the stack (4) and add its successors 6, 7. We get [6,7,5,3].

5.Remove the first element from the stack (6) which has no successors. We get [7,5,3].

6.Remove the first element from the stack (7) which has no successors. We get [5,3].

7.Remove the first element from the stack (5) and add its successors 8, 9. We get [8,9,3].

8.Remove the first element from the stack (8) which has no successors. We get [9,3].

9.Remove the first element from the stack (9) which has no successors. We get [3].

10.Remove the first element from the stack (3) and add its successors 10, 11. We get [10,11]......

▪ Tree traversal

Depth-First Search
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1. Put n0 in Open. We get [n0].

▪ Illustration: 

Depth-First Search
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2. Remove the first element of the stack (the n0) and add its 

successors n1, n2, n3. We get [n1, n2, n3]. 
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1. Put n0 in Open. We get [n0].

▪ Illustration: 

Depth-First Search
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2. Remove the first element of the stack (the n0) and add its 

successors n1, n2, n3. We get [n1, n2, n3]. 
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1. Put n0 in Open. We get [n0].

3. Remove the first element of the stack (the n1) and add its 

successors n5. We get [n5, n2, n3]. 

▪ Illustration: 

Depth-First Search



27

2. Remove the first element of the stack (the n0) and add its 

successors n1, n2, n3. We get [n1, n2, n3]. 
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1. Put n0 in Open. We get [n0].

3. Remove the first element of the stack (the n1) and add its 

successors n5. We get [n5, n2, n3]. 

4. Remove the first element of the stack (the n5) and add its 

successors n6. We get [n6, n2, n3]. 

n6  Appears in Open 

then Stop

Succès

▪ Illustration: 

Depth-First Search
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It is a depth-first search where states are explored to a limited depth

Example with Limit  =  2

We add the successors of a state only if we have not 
exceeded the limit of 2.

1.Put 1 in the stack with its depth. We get [(1,0)].
2.Remove the first element from the stack (1, 0) and add its successors 2, 3 if we have not exceeded the limit. We get 
[(2,1),(3,1)].
3.Remove the first element from the stack (2, 1) and add its successors 4, 5 if we have not exceeded the limit. We get 
[(4,2),(5,2),(3,1)].
4.Remove the first element from the stack (4, 2) and add nothing. We get [(5,2),(3,1)].
5.Remove the first element from the stack (5, 2) and add nothing. We get [(3,1)].
6.Remove the first element from the stack (3, 1) and add its successors 10, 11 if we have not exceeded the limit. We get 
[(10,2),(11,2)].
7.Remove the first element from the stack (10, 2) and add nothing. We get [(11,2)].
8.Remove the first element from the stack (11, 2) and add nothing. We get [].

Limited Depth-First Search (LDFS)
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It is an iteration of the limited depth-first search

For p = 0 to infinite do

{

Limited_DFS(p)

}

Iterative Depth-First Search (IDFS)
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✓ The breadth-first search strategy is interesting because if there exists a 
path to the goal in the early levels, it finds the shortest path.

✓ The depth-first search strategy is also interesting because it returns the 
best path if the goal state is found in the early branches of the search 
tree.

▪ However, these two strategies are considered blind because they do not 
take into account the path leading to the goal state

BFS vs DFS
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Principle:
▪ Each arc of the graph is associated with a traversal cost. 
▪ This algorithm provides an optimal cost solution.

o C(ni, nj) is the cost of an arc from ni to nj.

o The cost function of a node ns, which is the successor node of n, is 
calculated as follows:  

                                                   g(ns) = g(n) + c(n, ns)

Where g(n) is the cost up to node n

The open nodes of the graph are ordered in ascending order. 

Uniform-Cost Search Algorithm
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Uniform-Cost Search Algorithm

Illustrative example : Path between two cities n0 and n6
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1. Put n0 in Open with its initial cost. We get
[(n0,0)].
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Uniform-Cost Search Algorithm
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1. Put n0 in Open with its initial cost. We get
[(n0,0)].
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2. Remove the first element of the list (n0,0) and add its 
successors n1, n2, n3  to the list of states respecting the 
ascending order. To achieve this, we will calculate the total 
cost of each successor : g(ns) = g(n) + c(n, ns)
g(n1) = g(n0) + c(n0, n1) = 3
We get: [(n3,2, n0), (n1,3, n0), (n2,4, n0)] 

Uniform-Cost Search Algorithm
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3. Remove the first element of the list (n3,2,n0) and add its 
successors n2, n4 to the list of states respecting the ascending 
order. We get: [(n1,3, n0), (n2,3, n3),(n4,3, n3), (n2,4, n0)] 

1. Put n0 in Open with its initial cost. We get
[(n0,0)].

2. Remove the first element of the list (n0,0) and add its 
successors n1, n2, n3  to the list of states respecting the 
ascending order. To achieve this, we will calculate the total 
cost of each successor : g(ns) = g(n) + c(n, ns)
g(n1) = g(n0) + c(n0, n1) = 3
We get: [(n3,2, n0), (n1,3, n0), (n2,4, n0)] 

Uniform-Cost Search Algorithm
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4. Remove the first element of the list (n1,3,n0) and add its 
successors n5 to the list of states respecting the ascending order. 
We get: [(n2,3, n3),(n4,3, n3), (n2,4, n0),(n5,10, n1)] 

3. Remove the first element of the list (n3,2,n0) and add its 
successors n2, n4 to the list of states respecting the ascending 
order. 
We get: [(n1,3, n0), (n2,3, n3),(n4,3, n3), (n2,4, n0)] 

1. Put n0 in Open with its initial cost. We get
[(n0,0)].

2. Remove the first element of the list (n0,0) and add its 
successors n1, n2, n3  to the list of states respecting the 
ascending order. To achieve this, we will calculate the total 
cost of each successor : g(ns) = g(n) + c(n, ns)
g(n1) = g(n0) + c(n0, n1) = 3
We get: [(n3,2, n0), (n1,3, n0), (n2,4, n0)] 

Uniform-Cost Search Algorithm



37

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

5. Remove the first element of the list (n2,3,n3) and add its 
successors n4 to the list of states respecting the ascending order. 
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)] 

Uniform-Cost Search Algorithm
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6. Remove the first element of the list (n4,3,n3) and add its 
successors n6 to the list of states respecting the ascending order. 
We get: [(n2,4, n0), (n4,5,n2),(n6,7,n4),(n5,10,n1)] 

5. Remove the first element of the list (n2,3,n3) and add its 
successors n4 to the list of states respecting the ascending order. 
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)] 

Uniform-Cost Search Algorithm
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7. Remove the first element of the list (n2,4, n0) and add its 
successors n4 to the list of states respecting the ascending order. 
We get: [(n4,5,n2 (n3)), (n4,6,n2 (n0)),(n6,7,n4),(n5,10,n1)] 

6. Remove the first element of the list (n4,3,n3) and add its 
successors n6 to the list of states respecting the ascending order. 
We get: [(n2,4, n0), (n4,5,n2),(n6,7,n4),(n5,10,n1)] 

5. Remove the first element of the list (n2,3,n3) and add its 
successors n4 to the list of states respecting the ascending order. 
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)] 

Uniform-Cost Search Algorithm
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8. Remove the first element of the list (n4,5,n2 (n3)) and add its 
successors n6 to the list of states respecting the ascending order. 
We get: [ (n4,6,n2 (n0)),(n6,7,n4 (n3)), (n6,9,n4 (n2)), (n5,10,n1)] 

7. Remove the first element of the list (n2,4, n0) and add its 
successors n4 to the list of states respecting the ascending order. 
We get: [(n4,5,n2 (n3)), (n4,6,n2 (n0)),(n6,7,n4),(n5,10,n1)] 

6. Remove the first element of the list (n4,3,n3) and add its 
successors n6 to the list of states respecting the ascending order. 
We get: [(n2,4, n0), (n4,5,n2),(n6,7,n4),(n5,10,n1)] 

5. Remove the first element of the list (n2,3,n3) and add its 
successors n4 to the list of states respecting the ascending order. 
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)] 

Uniform-Cost Search Algorithm
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9. Remove the first element of the list (n4,6,n2 (n0)) and add its successors 
n6 to the list of states respecting the ascending order. 
We get: [(n6,7,n4 (n3)), (n6,9,n4 (n2,n3)), (n6,10,n4 (n2,n0)), (n5,10,n1)] 

8. Remove the first element of the list (n4,5,n2 (n3)) and add its 
successors n6 to the list of states respecting the ascending order. 
We get: [ (n4,6,n2 (n0)),(n6,7,n4 (n3)), (n6,9,n4 (n2)), (n5,10,n1)] 

7. Remove the first element of the list (n2,4, n0) and add its 
successors n4 to the list of states respecting the ascending order. 
We get: [(n4,5,n2 (n3)), (n4,6,n2 (n0)),(n6,7,n4),(n5,10,n1)] 

6. Remove the first element of the list (n4,3,n3) and add its 
successors n6 to the list of states respecting the ascending order. 
We get: [(n2,4, n0), (n4,5,n2),(n6,7,n4),(n5,10,n1)] 

5. Remove the first element of the list (n2,3,n3) and add its 
successors n4 to the list of states respecting the ascending order. 
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)] 

Uniform-Cost Search Algorithm
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9. Remove the first element of the list (n4,6,n2 (n0)) and add its successors 
n6 to the list of states respecting the ascending order. 
We get: [(n6,7,n4 (n3)), (n6,9,n4 (n2,n3)), (n6,10,n4 (n2,n0)), (n5,10,n1)] 

n6  Appears in the head of 

Open then stop the search

The path with optimal cost: n0,n3,n4, n6

If the cost of each arc = 1, then Uniform-Cost = BFS

Uniform-Cost Search Algorithm
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Heuristic-Based Search Algorithms

Best-First Search

1. Start the search by a List containing the starting state (initial node) of the problem

2. If List not empty:

   - Select a state n with minimal measure to expand

   - If n is a final state (Goal node) then return Success

   - Else, add all n successor nodes to the List with respect of ascending order according 

     to the utility measure.

   - Restart at point 2.

3. Else return Failure.
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- The utility measure is given by an estimation function h. 

- For each state n, h(n) represents the estimated cost from n to a final state. 

For example, in the problem of the shortest path between two cities, 

we can take h(n) = direct distance between n and the destination city. 

- Greedy search will choose the state that seems closest to a final state 

according to the estimation function h.

Heuristic-Based Search Algorithms

Greedy Best-First Search
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h(n0)

c(n0 ,n1)

Open List :

- (n0,9,void)

- (n2,2,n0), (n1,2,n0), (n3,5,n0)

- (n1,2,n0), (n4,3,n2), (n3,5,n0)

- (n5,2,n1), (n4,3,n2), (n3,5,n0)

- (n6,0,n5), (n4,3,n2), (n3,5,n0)

Path : n0 → n1 → n5 → n6

Greedy Best-First Search
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- The utility measure is given by an evaluation function f

- For each node n:    f(n) = g(n) + h(n)

o g(n) Is the cost till present to get n

o h(n) Is the estimated cost to go from n to the goal node.

o f(n) Is the total estimated cost to go from the initial node to the goal node going 

through n

Heuristic-Based Search Algorithms

A* Search

h is said to be admissible if for all n: h(n) ≤ c(n)

c(n) being the real cost leading from n to the final state
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A* Search Algorithm

1. Declare two nodes n, ns

2. Declare two lists Open and Closed (initially empty)

3. Add initial node to Open

4. If Open is empty Then Exit the loop with a failure

5. Current node n = node at the head of Open

6. Remove n from Open and add it to Closed.

7. If n= goal Then Exit the loop and return the path 

      Else : For each successor ns of n:

                             - Initilize the value g(ns) = g(n) + c(n,ns)

                             - Set parent of ns to n

       - If Open or Closed contains a node ns’=ns with f(ns)  f(ns’) 

                               Then remove ns’ from Open or Closed and insert ns into Open (with respect to the ascending order of f)

                               Else : Insert ns into Open (with respect to the ascending order of f)

                             - Go to 4.
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Illustrative example: Path-Finding between two cities

n0 : Departure city (initial node)

n6 : Destination city(goal node)

h : Direct distance between a city and the destination city (heuristic)

c : Real distance between two cities
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3

0

h(n0)

c(n0 ,n1)

A* Search Algorithm
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0

Illustrative example: Path-Finding between two cities

A* Search Algorithm

State of Open in each iteration 

(State, f, Parent)

State of Closed in each iteration 

(State, f, Parent)



Exercice 1Exercise n° 1: Given the following search tree

o Number the different states of the tree according to their traversal orders using the two 

strategies Breadth-First followed by Depth-First.



Exercice 2Exercise n°2: Transform the following graph into a search tree, then apply a breadth-first 
search followed by a depth-first search to find the state G from S. In case of conflicts 
between nodes, follow alphabetical order.



1. Apply the strategies BFS, DFS and Uniform-Cost

Exercise n° 3
We consider the following map. The objective is to find the optimal path between A and I. We also 
give two heuristics h1 and h2:

2. Find the optimal (we minimize) path using the following algorithms:
a) Greedy Best-First Search using h2 as heuristic function
b) A* Search using h1



1) Greedy Best-First Search using h2 2) A* Search using h1

[(A,10,void)] 

[(C,8,A),(D,11,A)] 

[(B,2,C),(F,2,C),(H,5,C),(D,11,A)] 

[(I,0,B),(G,1,B),(F,2,C),(H,5,C)(D,11,A)]

The optimal path: A → C → B → I 

[(A,10,void)] 

[(C,10,A),(D,15,A)] 

[(F,10,C), (H,11,C), (B,13,C),(D,15,A)] 

[(H,11,C), (B,13,C), (G,13,F),(D,15,A)] 

[(I,12,H)(B,13,C), (G,13,F),(D,15,A)] 

Le chemin traversé est : A → C → H → I 
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