

Problem-Solving & Search Algorithms

1

Solving a problem

Intuitive steps by a human

- Model the current situation
- List possible solutions
- Evaluate the value of each solution
- Select the best option satisfying the goal
- How to efficiently browse the list of solutions ?
- Several problems can be solved by searching in a graph :
 - Each node represents a state of the environment
 - Each path through a graph represents a sequence of actions
 - The solution: simply look for the path that best satisfies our performance measurement

Example: Path-finding in a city

Find the best path between the 9th ave – 50th street to the 3rd ave -51st street

Example: Google Maps

Example: Package delivery

Initial state

Goal

5

Example: Chess game

Initial state

а

е

Goal

Example: N-Puzzle

Graph search problem

Input:

- Initial node
- Goal function **Goal(n)** which returns **True** if the goal is achieved
- Transition function **Transition(n)** which returns the successor nodes of n
- Cost function c(n,n') strictly positive, which returns the cost of going from n to n'

• Output:

- A path in the graph (nodes and edges)
 - \circ $\,$ The path cost is the sum of all the edges cost in the graph
 - \circ $\;$ There can be several goal nodes

> Challenges:

- Find a solution path
- Find an optimal path
- Quickly find a path (in this case the optimality is not important)

A real world example: Find a path between two cities

- Cities: Nodes
- Paths between two cities: Edges
- Starting city: Initial node **n**₀
- Roads between cities: Transition(n₀) = (n₃, n₂, n₁)
- Distance between cities: c(n₀,n₂) = 4
- Destination city: **Goal(n) = True** if $n = n_6 (n_6 \text{ is the destination city})$

Search Algorithms

Any search problem is characterized by a **starting situation** and a **goal** to achieve and a **search space**:

- The search space is composed of the set of all possible states.
- To determine possible operations to move from one state to another.
- To determine a search strategy.

There are different strategies:

- Uninformed (Blind):
 - **o** Breadth-first search
 - Depth-first search (and its variations)
 - \circ Uniform cost
- Informed:
 - Best-first search,
 - Greedy best-first search,
 - A* algorithm

Breadth-First Search (BFS)

> For a given node, explore the sibling nodes before exploring their children.

Breadth-First Algorithm:

- 1- Put the initial state node in a FIFO queue: OPEN
- 2- If n corresponds to the final state then Success
- 3- If OPEN is empty then Failure
- 4- Remove **n** from **OPEN**
- 5- If **n** has **no successors** then go to **3**, otherwise:
 - Develop the successors of **n**
 - Insert them into **OPEN**
 - Establish chaining
 - Insert **n** into **Closed** (a queue containing the nodes already explored)
- 6- If among the successors there are final states then Success, otherwise go to 3

Tree traversal

1.Put 1 in the list. We get [1].

2.Remove the first element of the list (the 1) and add its successors 2, 3. We get [2,3].

3.Remove the first element of the list (the 2) and add its successors 4, 5. We get [3,4,5].

4.Remove the first element of the list (the 3) and add its successors 6, 7. We get [4,5,6,7].

Illustration:

1. Put n_0 in the Open list. We get $[n_0]$.

Illustration:

- 1. Put **n**₀ in the Open list. We get **[n**₀].
- 2. Remove the first element of the list (the n_0) and add

its successors \mathbf{n}_1 , \mathbf{n}_2 , \mathbf{n}_3 . We get $[\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3]$.

Illustration:

- 1. Put **n**₀ in the Open list. We get **[n**₀].
- 2. Remove the first element of the list (the n_0) and add
- its successors \mathbf{n}_1 , \mathbf{n}_2 , \mathbf{n}_3 . We get $[\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3]$.
- 3. Remove the first element of the list (the n_1) and add its successors n_5 . We get $[n_{2}, n_{3}, n_5]$.

Illustration:

- 1. Put **n**₀ in the Open list. We get **[n**₀**]**.
- 2. Remove the first element of the list (the n_0) and add
- its successors \mathbf{n}_1 , \mathbf{n}_2 , \mathbf{n}_3 . We get $[\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3]$.
- 3. Remove the first element of the list (the n_1) and add its successors n_5 . We get $[n_2, n_3, n_5]$.
- 4. Remove the first element of the list (the n_2) and add its successors n_4 . We get $[n_{3,}n_{5,}n_4]$.

Illustration:

1. Put **n**₀ in the Open list. We get **[n**₀**]**.

2. Remove the first element of the list (the n_0) and add its successors n_1 , n_2 , n_3 . We get $[n_1, n_2, n_3]$.

3. Remove the first element of the list (the n_1) and add its successors n_5 . We get $[n_2, n_3, n_5]$.

4. Remove the first element of the list (the n_2) and add its successors n_4 . We get $[n_{3,} n_{5,} n_4]$.

5. Remove the first element of the list (the n_3) and add its successors n_{2,n_4} . We get $[n_{5,n_4,n_{2(n3)},n_{4(n3)}}]$.

Illustration:

1. Put n_0 in the Open list. We get $[n_0]$.

2. Remove the first element of the list (the n_0) and add its successors n_1 , n_2 , n_3 . We get $[n_1, n_2, n_3]$.

3. Remove the first element of the list (the n_1) and add its successors n_5 . We get $[n_2, n_3, n_5]$.

4. Remove the first element of the list (the n₂) and add its successors n₄. We get [n₃, n₅, n₄].
5. Remove the first element of the list (the n₃) and add its successors n₂, n₄. We get [n₅, n₄, n_{2(n3)}, n_{4(n3)}].
6. Remove the first element of the list (the n₅) and add its successors n₆. We get [n₄, n_{2(n3)}, n_{4(n3)}, n₆].

Depth-First Search (DFS)

> For a given node, explore the first child node before exploring the sibling nodes.

Depth-First Algorithm:

- 1- Put the initial state node in a LIFO stack: OPEN
- 2- If the stack is empty then Failure
- 3- Pop **n**
- 4- Develop the **successors** of **n**:
 - $\circ~$ If successors exist then
 - Push the successors
 - Establish the successor chaining
 - Put **n** in **Closed**

6- If among the successors there are final states then Success, otherwise go to 2

Tree traversal

We are using a stack data structure:

1.Put 1 into the stack. We get [1].

2.Remove the first element from the stack (1) and add its successors 2, 3. We get [2,3].

1

Depth-First Search

1

2

/ \

3

1

/

2 3

5

4

1

2

4 5

6

/

3

/

2 3

9

/

4 5

8

2 3 . . .

/

10 11

3.Remove the first element from the stack (2) and add its successors 4, 5. We get [4,5,3].

4.Remove the first element from the stack (4) and add its successors 6, 7. We get [6,7,5,3].

5.Remove the first element from the stack (6) which has no successors. We get [7,5,3].

6.Remove the first element from the stack (7) which has no successors. We get [5,3].

7.Remove the first element from the stack (5) and add its successors 8, 9. We get [8,9,3].

8.Remove the first element from the stack (8) which has no successors. We get [9,3].

9. Remove the first element from the stack (9) which has no successors. We get [3].

10. Remove the first element from the stack (3) and add its successors 10, 11. We get [10,11].....

Illustration:

1. Put **n**₀ in **Open**. We get **[n**₀**]**.

Illustration:

1. Put n_0 in **Open**. We get $[n_0]$.

2. Remove the first element of the stack (the n_0) and add its

successors $\mathbf{n}_{1'}$ \mathbf{n}_{2} \mathbf{n}_{3} . We get $[\mathbf{n}_{1'}$ \mathbf{n}_{2} $\mathbf{n}_{3}]$.

Illustration:

1. Put **n**₀ in **Open**. We get **[n**₀].

2. Remove the first element of the stack (the \mathbf{n}_0) and add its

successors $\mathbf{n}_{1'}$ \mathbf{n}_{2} \mathbf{n}_{3} . We get $[\mathbf{n}_{1'}$ \mathbf{n}_{2} $\mathbf{n}_{3}]$.

3. Remove the first element of the stack (the n_1) and add its successors n_5 . We get $[n_5, n_2, n_3]$.

Illustration:

1. Put **n**₀ in **Open**. We get **[n**₀**]**.

2. Remove the first element of the stack (the n_0) and add its successors $n_{1\nu}$ n_{2} n_{3} . We get $[n_{1\nu}$ n_{2} $n_{3}]$.

3. Remove the first element of the stack (the n_1) and add its successors n_5 . We get $[n_5, n_2, n_3]$.

4. Remove the first element of the stack (the n_5) and add its successors n_6 . We get $[n_6, n_2, n_3]$.

n₆ Appears in Open then Stop

Succès

Limited Depth-First Search (LDFS)

It is a depth-first search where states are explored to a limited de	epth			
	1	1	1	1
Example with Limit = 2		/ \ 2 3	/ \ 2 3	/ \ 2 3
We add the successors of a state only if we have not exceeded the limit of 2.		2 0	/ \ 4 5	/ \ 10_11

1.Put 1 in the stack with its depth. We get [(1,0)].

2.Remove the first element from the stack (1, 0) and add its successors 2, 3 if we have not exceeded the limit. We get [(2,1),(3,1)].

3.Remove the first element from the stack (2, 1) and add its successors 4, 5 if we have not exceeded the limit. We get [(4,2),(5,2),(3,1)].

4.Remove the first element from the stack (4, 2) and add nothing. We get [(5,2),(3,1)].

5.Remove the first element from the stack (5, 2) and add nothing. We get [(3,1)].

6.Remove the first element from the stack (3, 1) and add its successors 10, 11 if we have not exceeded the limit. We get [(10,2),(11,2)].

7.Remove the first element from the stack (10, 2) and add nothing. We get [(11,2)].

8.Remove the first element from the stack (11, 2) and add nothing. We get [].

Iterative Depth-First Search (IDFS)

It is an iteration of the limited depth-first search

```
For p = 0 to infinite do {
Limited_DFS(p)
}
```

BFS vs DFS

- The breadth-first search strategy is interesting because if there exists a path to the goal in the early levels, it finds the shortest path.
- The depth-first search strategy is also interesting because it returns the best path if the goal state is found in the early branches of the search tree.
- However, these two strategies are considered blind because they do not take into account the path leading to the goal state

Principle:

- Each arc of the graph is associated with a traversal cost.
- This algorithm provides an optimal cost solution.
 - $C(n_i, n_j)$ is the cost of an arc from n_i to n_j .
 - The cost function of a node **ns**, which is the successor node of **n**, is calculated as follows:

Where **g(n)** is the cost up to node **n**

The open nodes of the graph are ordered in ascending order.

1. Put n_0 in Open with its initial cost. We get $[(n_0, 0)]$.

1. Put n_0 in Open with its initial cost. We get $[(n_0, 0)]$.

2. Remove the first element of the list $(n_0, 0)$ and add its successors n_1 , n_2 , n_3 to the list of states respecting the ascending order. To achieve this, we will calculate the total cost of each successor : g(ns) = g(n) + c(n, ns) $g(n_1) = g(n_0) + c(n_0, n_1) = 3$ We get: $[(n_3, 2, n_0), (n_1, 3, n_0), (n_2, 4, n_0)]$

1. Put n_0 in Open with its initial cost. We get $[(n_0, 0)]$.

2. Remove the first element of the list $(n_0, 0)$ and add its successors n_1 , n_2 , n_3 to the list of states respecting the ascending order. To achieve this, we will calculate the total cost of each successor : g(ns) = g(n) + c(n, ns) $g(n_1) = g(n_0) + c(n_0, n_1) = 3$ We get: $[(n_3, 2, n_0), (n_1, 3, n_0), (n_2, 4, n_0)]$

3. Remove the first element of the list $(n_3, 2, n_0)$ and add its successors $n_{2,} n_4$ to the list of states respecting the ascending order. We get: $[(n_1, 3, n_0), (n_2, 3, n_3), (n_4, 3, n_3), (n_2, 4, n_0)]$

1. Put **n**₀ in Open with its initial cost. We get **[(n**₀,**0)]**.

2. Remove the first element of the list $(n_0, 0)$ and add its successors n_1 , n_2 , n_3 to the list of states respecting the ascending order. To achieve this, we will calculate the total cost of each successor : g(ns) = g(n) + c(n, ns) $g(n_1) = g(n_0) + c(n_0, n_1) = 3$ We get: $[(n_3, 2, n_0), (n_1, 3, n_0), (n_2, 4, n_0)]$

3. Remove the first element of the list $(n_3, 2, n_0)$ and add its successors $n_{2,} n_4$ to the list of states respecting the ascending order.

```
We get: [(n<sub>1</sub>,3, n<sub>0</sub>), (n<sub>2</sub>,3, n<sub>3</sub>),(n<sub>4</sub>,3, n<sub>3</sub>), (n<sub>2</sub>,4, n<sub>0</sub>)]
```

4. Remove the first element of the list $(n_1,3,n_0)$ and add its successors n_5 to the list of states respecting the ascending order. We get: $[(n_2,3,n_3),(n_4,3,n_3),(n_2,4,n_0),(n_5,10,n_1)]$

5. Remove the first element of the list $(n_2,3,n_3)$ and add its successors n_4 to the list of states respecting the ascending order. We get: $[(n_4,3,n_3), (n_2,4,n_0), (n_4,5,n_2), (n_5,10,n_1)]$

5. Remove the first element of the list $(n_2,3,n_3)$ and add its successors n_4 to the list of states respecting the ascending order. We get: $[(n_4,3,n_3), (n_2,4,n_0), (n_4,5,n_2), (n_5,10,n_1)]$

6. Remove the first element of the list $(n_4, 3, n_3)$ and add its successors n_6 to the list of states respecting the ascending order. We get: $[(n_2, 4, n_0), (n_4, 5, n_2), (n_6, 7, n_4), (n_5, 10, n_1)]$

5. Remove the first element of the list $(n_2,3,n_3)$ and add its successors n_4 to the list of states respecting the ascending order. We get: $[(n_4,3,n_3), (n_2,4,n_0), (n_4,5,n_2), (n_5,10,n_1)]$

6. Remove the first element of the list $(n_4, 3, n_3)$ and add its successors n_6 to the list of states respecting the ascending order. We get: $[(n_2, 4, n_0), (n_4, 5, n_2), (n_6, 7, n_4), (n_5, 10, n_1)]$

7. Remove the first element of the list $(n_2,4, n_0)$ and add its successors n_4 to the list of states respecting the ascending order. We get: $[(n_4,5,n_2_{(n3)}), (n_4,6,n_2_{(n0)}), (n_6,7,n_4), (n_5,10,n_1)]$

5. Remove the first element of the list $(n_2, 3, n_3)$ and add its successors n_4 to the list of states respecting the ascending order. We get: $[(n_4, 3, n_3), (n_2, 4, n_0), (n_4, 5, n_2), (n_5, 10, n_1)]$

6. Remove the first element of the list $(n_4,3,n_3)$ and add its successors n_6 to the list of states respecting the ascending order. We get: $[(n_2,4, n_0), (n_4,5,n_2), (n_6,7,n_4), (n_5,10,n_1)]$

7. Remove the first element of the list $(n_2, 4, n_0)$ and add its successors n_4 to the list of states respecting the ascending order. We get: $[(n_4, 5, n_2_{(n3)}), (n_4, 6, n_2_{(n0)}), (n_6, 7, n_4), (n_5, 10, n_1)]$

8. Remove the first element of the list $(n_4, 5, n_2_{(n3)})$ and add its successors n_6 to the list of states respecting the ascending order. We get: $[(n_4, 6, n_2_{(n0)}), (n_6, 7, n_4_{(n3)}), (n_6, 9, n_4_{(n2)}), (n_5, 10, n_1)]$

 n_1

n₅

n₆

5. Remove the first element of the list $(n_2,3,n_3)$ and add its successors n_4 to the list of states respecting the ascending order. We get: $[(n_4,3,n_3), (n_2,4,n_0), (n_4,5,n_2), (n_5,10,n_1)]$

6. Remove the first element of the list $(n_4,3,n_3)$ and add its successors n_6 to the list of states respecting the ascending order. We get: $[(n_2,4, n_0), (n_4,5,n_2), (n_6,7,n_4), (n_5,10,n_1)]$

7. Remove the first element of the list $(n_2, 4, n_0)$ and add its successors n_4 to the list of states respecting the ascending order. We get: $[(n_4, 5, n_2_{(n3)}), (n_4, 6, n_2_{(n0)}), (n_6, 7, n_4), (n_5, 10, n_1)]$

8. Remove the first element of the list $(n_4, 5, n_2_{(n3)})$ and add its successors n_6 to the list of states respecting the ascending order. We get: $[(n_4, 6, n_2_{(n0)}), (n_6, 7, n_4_{(n3)}), (n_6, 9, n_4_{(n2)}), (n_5, 10, n_1)]$

9. Remove the first element of the list $(n_4, 6, n_2_{(n0)})$ and add its successors n_6 to the list of states respecting the ascending order. We get: $[(n_6, 7, n_4_{(n3)}), (n_6, 9, n_4_{(n2,n3)}), (n_6, 10, n_4_{(n2,n0)}), (n_5, 10, n_1)]$

9. Remove the first element of the list $(n_4, 6, n_2_{(n0)})$ and add its successors n_6 to the list of states respecting the ascending order. We get: $[(n_6, 7, n_4_{(n3)}), (n_6, 9, n_4_{(n2,n3)}), (n_6, 10, n_4_{(n2,n0)}), (n_5, 10, n_1)]$

 n_6 Appears in the head of

Open then stop the search

The path with optimal cost: n_0 , n_3 , n_4 , n_6

If the cost of **each arc = 1**, then **Uniform-Cost = BFS**

Heuristic-Based Search Algorithms

Best-First Search

- 1. Start the search by a **List** containing the starting state (**initial node**) of the problem
- 2. If **List** not empty:
 - Select a state **n** with **minimal** measure to expand
 - If **n** is a final state (**Goal node**) then return **Success**
 - Else, add all **n successor nodes** to the List with respect of ascending order according to the utility measure.
 - Restart at point 2.
- 3. Else return Failure.

Greedy Best-First Search

- The utility measure is given by an estimation function **h**.
- For each state **n**, **h**(**n**) represents the **estimated cost** from **n** to a **final state**.

For example, in the problem of the shortest path between two cities,

we can take **h(n) = direct distance** between **n** and the **destination city**.

- Greedy search will choose the state that seems **closest** to a final state

according to the **estimation function h**.

Greedy Best-First Search

<u>Open List :</u>

- (n₀,9,void)
- $(n_2, 2, n_0)$, $(n_1, 2, n_0)$, $(n_3, 5, n_0)$
- $(n_1, 2, n_0)$, $(n_4, 3, n_2)$, $(n_3, 5, n_0)$
- $(n_5, 2, n_1)$, $(n_4, 3, n_2)$, $(n_3, 5, n_0)$
- $(n_6,0,n_5)$, $(n_4,3,n_2)$, $(n_3,5,n_0)$

 $\textbf{Path}:\textbf{n}_{0}\rightarrow\textbf{n}_{1}\rightarrow\textbf{n}_{5}\rightarrow\textbf{n}_{6}$

Heuristic-Based Search Algorithms

A* Search

- The utility measure is given by an evaluation function f
- For each node **n**: f(n) = g(n) + h(n)
 - **g(n)** Is the cost till present to get **n**
 - **h(n)** Is the estimated cost to go from **n** to the **goal node**.
 - *f(n)* Is the total estimated cost to go from the initial node to the goal node going through n

h is said to be admissible if for all n: h(n) ≤ c(n)
c(n) being the real cost leading from n to the final state

A* Search Algorithm

- 1. Declare two nodes *n*, *ns*
- 2. Declare two lists **Open** and **Closed** (initially empty)
- 3. Add initial node to Open
- 4. If Open is empty Then Exit the loop with a failure
- 5. Current node **n** = **node** at the head of **Open**
- 6. Remove **n** from **Open** and add it to **Closed**.
- 7. If *n= goal* Then Exit the loop and return the path

Else : For each successor **ns** of **n**:

- Initilize the value **g(ns) = g(n) + c(n,ns)**
- Set parent of **ns** to **n**
- If Open or Closed contains a node ns'=ns with f(ns) ≤ f(ns')

Then remove *ns'* from *Open* or *Closed* and insert *ns* into *Open* (with respect to the ascending order of *f*) Else : Insert *ns* into *Open* (with respect to the ascending order of *f*)

- Go to **4**.

A* Search Algorithm

Illustrative example: Path-Finding between two cities

- **n**₀: Departure city (initial node)
- **n**₆: Destination city(goal node)
- **h** : Direct distance between a city and the destination city (heuristic)
- **c** : Real distance between two cities

A* Search Algorithm

Illustrative example: Path-Finding between two cities

State of Open in each iteration	State of Closed in each iteration	
(State, f, Parent)	(State, f, Parent)	
1. (n ₀ , 9, void)	1. Vide	(n_0)
2. $(n_1, 5, n_0), (n_2, 6, n_0), (n_3, 7, n_0)$	2. (n ₀ , 9, void)	2 4 3
3. $(n_2, 6, n_0)$, $(n_3, 7, n_0)$, $(n_5, 12, n_1)$	3. (n ₀ , 9, void), (n ₁ ,5,n ₀)	$5 \xrightarrow{n_3} 1 \xrightarrow{n_2} 2 \xrightarrow{n_1}^2$
4. $(n_3,7,n_0), (n_4,9,n_2), (n_5,12,n_1)$	4. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_2, 6, n_0)$	$n_{\rm A}$ $n_{\rm A}$ $n_{\rm A}$ $n_{\rm A}$ $n_{\rm A}$
5. $(n_2,5,n_3)$, $(n_4,6,n_3)$, $(n_5,12,n_1)$	5. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_3, 7, n_0)$	4
6. $(n_4, 6, n_3), (n_5, 12, n_1)$	6. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_3, 7, n_0), (n_2, 5, n_3)$	
7. (n ₆ ,7,n ₄), (n ₅ ,12,n ₁)	7. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_3, 7, n_0), (n_2, 5, n_3), (n_4, 6, n_3)$	U
8. Solution : n₀,n₃,n₄,n₆	8. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_3, 7, n_0), (n_2, 5, n_3), (n_4, 6, n_3), (n_6, 7, n_4)$	49

Exercise n° 1: Given the following search tree

 Number the different states of the tree according to their traversal orders using the two strategies Breadth-First followed by Depth-First.

Exercise n°2: Transform the following graph into a search tree, then apply a breadth-first search followed by a depth-first search to find the state **G** from **S**. In case of conflicts between nodes, follow alphabetical order.

Exercise n° 3

We consider the following map. The objective is to find the optimal path between A and I. We also give two heuristics h1 and h2:

1. Apply the strategies BFS, DFS and Uniform-Cost

2. Find the optimal (we minimize) path using the following algorithms:

- a) Greedy Best-First Search using h2 as heuristic function
- b) A* Search using h1

Nœud	А	В	С	D	Е	F	G	Н	Ι
h1	10	5	5	10	10	3	3	3	0
h2	10	2	8	11	6	2	1	5	0

1) Greedy Best-First Search using h2

[(A,10,void)] [(C,8,A),(D,11,A)] [(B,2,C),(F,2,C),(H,5,C),(D,11,A)] [(I,0,B),(G,1,B),(F,2,C),(H,5,C)(D,11,A)]

The optimal path: A \rightarrow C \rightarrow B \rightarrow I

2) A* Search using h1

[(A,10,void)] [(C,10,A),(D,15,A)] [(F,10,C), (H,11,C), (B,13,C),(D,15,A)] [(H,11,C), (B,13,C), (G,13,F),(D,15,A)] [(I,12,H)(B,13,C), (G,13,F),(D,15,A)]

Le chemin traversé est : A \rightarrow C \rightarrow H \rightarrow I