
1

Problem-Solving & Search Algorithms

CHAPTER II

2

Solving a problem

▪ Intuitive steps by a human

• Model the current situation

• List possible solutions

• Evaluate the value of each solution

• Select the best option satisfying the goal

▪ How to efficiently browse the list of solutions ?

▪ Several problems can be solved by searching in a graph :

• Each node represents a state of the environment

• Each path through a graph represents a sequence of actions

• The solution: simply look for the path that best satisfies our performance measurement

3

Problem-Solving

Example: Path-finding in a city

Find the best path between the 9th ave – 50th street to the 3rd ave -51st street

4

Problem-Solving

Example: Google Maps

5

Problem-Solving

Example: Package delivery
Initial state Goal

6

Initial state Goal

Problem-Solving

Example: Chess game

7

Initial state Goal

Problem-Solving

Example: N-Puzzle

Up Up Left Down Right

8

Problem-Solving

Graph search problem
▪ Input:

• Initial node

• Goal function Goal(n) which returns True if the goal is achieved

• Transition function Transition(n) which returns the successor nodes of n

• Cost function c(n,n’) strictly positive, which returns the cost of going from n to n’

▪ Output:

• A path in the graph (nodes and edges)

o The path cost is the sum of all the edges cost in the graph

o There can be several goal nodes

➢ Challenges:

• Find a solution path

• Find an optimal path

• Quickly find a path (in this case the optimality is not important)

9

Problem-Solving

A real world example: Find a path
between two cities

• Cities: Nodes

• Paths between two cities: Edges

• Starting city: Initial node n0

• Roads between cities: Transition(n0) = (n3, n2, n1)

• Distance between cities: c(n0,n2) = 4

• Destination city: Goal(n) = True if n = n6 (n6 is the destination city)

10

Search Algorithms

Any search problem is characterized by a starting situation and a goal to achieve and a
search space:

▪ The search space is composed of the set of all possible states.
▪ To determine possible operations to move from one state to another.
▪ To determine a search strategy.

There are different strategies:
▪ Uninformed (Blind):

o Breadth-first search
o Depth-first search (and its variations)
o Uniform cost

▪ Informed:
o Best-first search,

• Greedy best-first search,
• A* algorithm

11

➢ For a given node, explore the sibling nodes before exploring their children.

Breadth-First Search (BFS)

12

Algorithme de recherche : Largeur d’abord

Breadth-First Algorithm:

1- Put the initial state node in a FIFO queue: OPEN

2- If n corresponds to the final state then Success

3- If OPEN is empty then Failure

4- Remove n from OPEN

5- If n has no successors then go to 3, otherwise:

- Develop the successors of n

- Insert them into OPEN

- Establish chaining

- Insert n into Closed (a queue containing the nodes already explored)

6- If among the successors there are final states then Success, otherwise go to 3

Breadth-First Search

13

1.Put 1 in the list. We get [1].

2.Remove the first element of the list (the 1) and add its successors 2, 3. We get [2,3].

3.Remove the first element of the list (the 2) and add its successors 4, 5. We get [3,4,5].

4.Remove the first element of the list (the 3) and add its successors 6, 7. We get [4,5,6,7].

▪ Tree traversal

Breadth-First Search

14

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

Illustrative example : Path between two cities n0 and n6

Breadth-First Search

15

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

1. Put n0 in the Open list. We get [n0].

▪ Illustration:

Breadth-First Search

16

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add

its successors n1, n2, n3. We get [n1, n2, n3].

▪ Illustration:

Breadth-First Search

17

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add

its successors n1, n2, n3. We get [n1, n2, n3].

3. Remove the first element of the list (the n1) and

add its successors n5. We get [n2, n3, n5].

▪ Illustration:

Breadth-First Search

18

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

4. Remove the first element of the list (the n2) and

add its successors n4. We get [n3, n5, n4].

▪ Illustration:

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add

its successors n1, n2, n3. We get [n1, n2, n3].

3. Remove the first element of the list (the n1) and

add its successors n5. We get [n2, n3, n5].

Breadth-First Search

19

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6
5. Remove the first element of the list (the n3) and add its

successors n2 ,n4. We get [n5, n4, n2(n3) , n4(n3)].

▪ Illustration:

4. Remove the first element of the list (the n2) and

add its successors n4. We get [n3, n5, n4].

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add

its successors n1, n2, n3. We get [n1, n2, n3].

3. Remove the first element of the list (the n1) and

add its successors n5. We get [n2, n3, n5].

Breadth-First Search

20

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

6. Remove the first element of the list (the n5) and add

its successors n6. We get [n4, n2(n3), n4(n3), n6].
n6 Appears in OPEN

then Stop

Success

▪ Illustration:

5. Remove the first element of the list (the n3) and add its

successors n2 ,n4. We get [n5, n4, n2(n3) , n4(n3)].

4. Remove the first element of the list (the n2) and

add its successors n4. We get [n3, n5, n4].

1. Put n0 in the Open list. We get [n0].

2. Remove the first element of the list (the n0) and add

its successors n1, n2, n3. We get [n1, n2, n3].

3. Remove the first element of the list (the n1) and

add its successors n5. We get [n2, n3, n5].

Breadth-First Search

21

Depth-First Search (DFS)

➢ For a given node, explore the first child node before exploring the sibling nodes.

22

Depth-First Algorithm:

1- Put the initial state node in a LIFO stack: OPEN

2- If the stack is empty then Failure

3- Pop n

4- Develop the successors of n:

o If successors exist then

- Push the successors

- Establish the successor chaining

- Put n in Closed

6- If among the successors there are final states then Success, otherwise go to 2

Depth-First Search

23

We are using a stack data structure:

1.Put 1 into the stack. We get [1].

2.Remove the first element from the stack (1) and add its successors 2, 3. We get [2,3].

3.Remove the first element from the stack (2) and add its successors 4, 5. We get [4,5,3].

4.Remove the first element from the stack (4) and add its successors 6, 7. We get [6,7,5,3].

5.Remove the first element from the stack (6) which has no successors. We get [7,5,3].

6.Remove the first element from the stack (7) which has no successors. We get [5,3].

7.Remove the first element from the stack (5) and add its successors 8, 9. We get [8,9,3].

8.Remove the first element from the stack (8) which has no successors. We get [9,3].

9.Remove the first element from the stack (9) which has no successors. We get [3].

10.Remove the first element from the stack (3) and add its successors 10, 11. We get [10,11]......

▪ Tree traversal

Depth-First Search

24

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

1. Put n0 in Open. We get [n0].

▪ Illustration:

Depth-First Search

25

2. Remove the first element of the stack (the n0) and add its

successors n1, n2, n3. We get [n1, n2, n3].

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

1. Put n0 in Open. We get [n0].

▪ Illustration:

Depth-First Search

26

2. Remove the first element of the stack (the n0) and add its

successors n1, n2, n3. We get [n1, n2, n3].

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

1. Put n0 in Open. We get [n0].

3. Remove the first element of the stack (the n1) and add its

successors n5. We get [n5, n2, n3].

▪ Illustration:

Depth-First Search

27

2. Remove the first element of the stack (the n0) and add its

successors n1, n2, n3. We get [n1, n2, n3].

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

1. Put n0 in Open. We get [n0].

3. Remove the first element of the stack (the n1) and add its

successors n5. We get [n5, n2, n3].

4. Remove the first element of the stack (the n5) and add its

successors n6. We get [n6, n2, n3].

n6 Appears in Open

then Stop

Succès

▪ Illustration:

Depth-First Search

28

It is a depth-first search where states are explored to a limited depth

Example with Limit = 2

We add the successors of a state only if we have not
exceeded the limit of 2.

1.Put 1 in the stack with its depth. We get [(1,0)].
2.Remove the first element from the stack (1, 0) and add its successors 2, 3 if we have not exceeded the limit. We get
[(2,1),(3,1)].
3.Remove the first element from the stack (2, 1) and add its successors 4, 5 if we have not exceeded the limit. We get
[(4,2),(5,2),(3,1)].
4.Remove the first element from the stack (4, 2) and add nothing. We get [(5,2),(3,1)].
5.Remove the first element from the stack (5, 2) and add nothing. We get [(3,1)].
6.Remove the first element from the stack (3, 1) and add its successors 10, 11 if we have not exceeded the limit. We get
[(10,2),(11,2)].
7.Remove the first element from the stack (10, 2) and add nothing. We get [(11,2)].
8.Remove the first element from the stack (11, 2) and add nothing. We get [].

Limited Depth-First Search (LDFS)

29

It is an iteration of the limited depth-first search

For p = 0 to infinite do

{

Limited_DFS(p)

}

Iterative Depth-First Search (IDFS)

30

✓ The breadth-first search strategy is interesting because if there exists a
path to the goal in the early levels, it finds the shortest path.

✓ The depth-first search strategy is also interesting because it returns the
best path if the goal state is found in the early branches of the search
tree.

▪ However, these two strategies are considered blind because they do not
take into account the path leading to the goal state

BFS vs DFS

31

Principle:
▪ Each arc of the graph is associated with a traversal cost.
▪ This algorithm provides an optimal cost solution.

o C(ni, nj) is the cost of an arc from ni to nj.

o The cost function of a node ns, which is the successor node of n, is
calculated as follows:

 g(ns) = g(n) + c(n, ns)

Where g(n) is the cost up to node n

The open nodes of the graph are ordered in ascending order.

Uniform-Cost Search Algorithm

32

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

Uniform-Cost Search Algorithm

Illustrative example : Path between two cities n0 and n6

33

1. Put n0 in Open with its initial cost. We get
[(n0,0)].

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

Uniform-Cost Search Algorithm

34

1. Put n0 in Open with its initial cost. We get
[(n0,0)].

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

2. Remove the first element of the list (n0,0) and add its
successors n1, n2, n3 to the list of states respecting the
ascending order. To achieve this, we will calculate the total
cost of each successor : g(ns) = g(n) + c(n, ns)
g(n1) = g(n0) + c(n0, n1) = 3
We get: [(n3,2, n0), (n1,3, n0), (n2,4, n0)]

Uniform-Cost Search Algorithm

35

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4
3. Remove the first element of the list (n3,2,n0) and add its
successors n2, n4 to the list of states respecting the ascending
order. We get: [(n1,3, n0), (n2,3, n3),(n4,3, n3), (n2,4, n0)]

1. Put n0 in Open with its initial cost. We get
[(n0,0)].

2. Remove the first element of the list (n0,0) and add its
successors n1, n2, n3 to the list of states respecting the
ascending order. To achieve this, we will calculate the total
cost of each successor : g(ns) = g(n) + c(n, ns)
g(n1) = g(n0) + c(n0, n1) = 3
We get: [(n3,2, n0), (n1,3, n0), (n2,4, n0)]

Uniform-Cost Search Algorithm

36

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

4. Remove the first element of the list (n1,3,n0) and add its
successors n5 to the list of states respecting the ascending order.
We get: [(n2,3, n3),(n4,3, n3), (n2,4, n0),(n5,10, n1)]

3. Remove the first element of the list (n3,2,n0) and add its
successors n2, n4 to the list of states respecting the ascending
order.
We get: [(n1,3, n0), (n2,3, n3),(n4,3, n3), (n2,4, n0)]

1. Put n0 in Open with its initial cost. We get
[(n0,0)].

2. Remove the first element of the list (n0,0) and add its
successors n1, n2, n3 to the list of states respecting the
ascending order. To achieve this, we will calculate the total
cost of each successor : g(ns) = g(n) + c(n, ns)
g(n1) = g(n0) + c(n0, n1) = 3
We get: [(n3,2, n0), (n1,3, n0), (n2,4, n0)]

Uniform-Cost Search Algorithm

37

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

5. Remove the first element of the list (n2,3,n3) and add its
successors n4 to the list of states respecting the ascending order.
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)]

Uniform-Cost Search Algorithm

38

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

6. Remove the first element of the list (n4,3,n3) and add its
successors n6 to the list of states respecting the ascending order.
We get: [(n2,4, n0), (n4,5,n2),(n6,7,n4),(n5,10,n1)]

5. Remove the first element of the list (n2,3,n3) and add its
successors n4 to the list of states respecting the ascending order.
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)]

Uniform-Cost Search Algorithm

39

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

7. Remove the first element of the list (n2,4, n0) and add its
successors n4 to the list of states respecting the ascending order.
We get: [(n4,5,n2 (n3)), (n4,6,n2 (n0)),(n6,7,n4),(n5,10,n1)]

6. Remove the first element of the list (n4,3,n3) and add its
successors n6 to the list of states respecting the ascending order.
We get: [(n2,4, n0), (n4,5,n2),(n6,7,n4),(n5,10,n1)]

5. Remove the first element of the list (n2,3,n3) and add its
successors n4 to the list of states respecting the ascending order.
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)]

Uniform-Cost Search Algorithm

40

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

8. Remove the first element of the list (n4,5,n2 (n3)) and add its
successors n6 to the list of states respecting the ascending order.
We get: [(n4,6,n2 (n0)),(n6,7,n4 (n3)), (n6,9,n4 (n2)), (n5,10,n1)]

7. Remove the first element of the list (n2,4, n0) and add its
successors n4 to the list of states respecting the ascending order.
We get: [(n4,5,n2 (n3)), (n4,6,n2 (n0)),(n6,7,n4),(n5,10,n1)]

6. Remove the first element of the list (n4,3,n3) and add its
successors n6 to the list of states respecting the ascending order.
We get: [(n2,4, n0), (n4,5,n2),(n6,7,n4),(n5,10,n1)]

5. Remove the first element of the list (n2,3,n3) and add its
successors n4 to the list of states respecting the ascending order.
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)]

Uniform-Cost Search Algorithm

41

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

9. Remove the first element of the list (n4,6,n2 (n0)) and add its successors
n6 to the list of states respecting the ascending order.
We get: [(n6,7,n4 (n3)), (n6,9,n4 (n2,n3)), (n6,10,n4 (n2,n0)), (n5,10,n1)]

8. Remove the first element of the list (n4,5,n2 (n3)) and add its
successors n6 to the list of states respecting the ascending order.
We get: [(n4,6,n2 (n0)),(n6,7,n4 (n3)), (n6,9,n4 (n2)), (n5,10,n1)]

7. Remove the first element of the list (n2,4, n0) and add its
successors n4 to the list of states respecting the ascending order.
We get: [(n4,5,n2 (n3)), (n4,6,n2 (n0)),(n6,7,n4),(n5,10,n1)]

6. Remove the first element of the list (n4,3,n3) and add its
successors n6 to the list of states respecting the ascending order.
We get: [(n2,4, n0), (n4,5,n2),(n6,7,n4),(n5,10,n1)]

5. Remove the first element of the list (n2,3,n3) and add its
successors n4 to the list of states respecting the ascending order.
We get: [(n4,3,n3), (n2,4, n0), (n4,5,n2),(n5,10,n1)]

Uniform-Cost Search Algorithm

42

n0

n1 n2 n3

n5

n6

n4

n6

n2 n4

n6

n4

n6

23
4

11

4

2

4

2

4

7

4

9. Remove the first element of the list (n4,6,n2 (n0)) and add its successors
n6 to the list of states respecting the ascending order.
We get: [(n6,7,n4 (n3)), (n6,9,n4 (n2,n3)), (n6,10,n4 (n2,n0)), (n5,10,n1)]

n6 Appears in the head of

Open then stop the search

The path with optimal cost: n0,n3,n4, n6

If the cost of each arc = 1, then Uniform-Cost = BFS

Uniform-Cost Search Algorithm

43

Heuristic-Based Search Algorithms

Best-First Search

1. Start the search by a List containing the starting state (initial node) of the problem

2. If List not empty:

 - Select a state n with minimal measure to expand

 - If n is a final state (Goal node) then return Success

 - Else, add all n successor nodes to the List with respect of ascending order according

 to the utility measure.

 - Restart at point 2.

3. Else return Failure.

44

- The utility measure is given by an estimation function h.

- For each state n, h(n) represents the estimated cost from n to a final state.

For example, in the problem of the shortest path between two cities,

we can take h(n) = direct distance between n and the destination city.

- Greedy search will choose the state that seems closest to a final state

according to the estimation function h.

Heuristic-Based Search Algorithms

Greedy Best-First Search

5

9

22

2
3

0

h(n0)

c(n0 ,n1)

Open List :

- (n0,9,void)

- (n2,2,n0), (n1,2,n0), (n3,5,n0)

- (n1,2,n0), (n4,3,n2), (n3,5,n0)

- (n5,2,n1), (n4,3,n2), (n3,5,n0)

- (n6,0,n5), (n4,3,n2), (n3,5,n0)

Path : n0 → n1 → n5 → n6

Greedy Best-First Search

46

- The utility measure is given by an evaluation function f

- For each node n: f(n) = g(n) + h(n)

o g(n) Is the cost till present to get n

o h(n) Is the estimated cost to go from n to the goal node.

o f(n) Is the total estimated cost to go from the initial node to the goal node going

through n

Heuristic-Based Search Algorithms

A* Search

h is said to be admissible if for all n: h(n) ≤ c(n)

c(n) being the real cost leading from n to the final state

47

A* Search Algorithm

1. Declare two nodes n, ns

2. Declare two lists Open and Closed (initially empty)

3. Add initial node to Open

4. If Open is empty Then Exit the loop with a failure

5. Current node n = node at the head of Open

6. Remove n from Open and add it to Closed.

7. If n= goal Then Exit the loop and return the path

 Else : For each successor ns of n:

 - Initilize the value g(ns) = g(n) + c(n,ns)

 - Set parent of ns to n

 - If Open or Closed contains a node ns’=ns with f(ns) f(ns’)

 Then remove ns’ from Open or Closed and insert ns into Open (with respect to the ascending order of f)

 Else : Insert ns into Open (with respect to the ascending order of f)

 - Go to 4.

48

Illustrative example: Path-Finding between two cities

n0 : Departure city (initial node)

n6 : Destination city(goal node)

h : Direct distance between a city and the destination city (heuristic)

c : Real distance between two cities

5

9

22

2
3

0

h(n0)

c(n0 ,n1)

A* Search Algorithm

49

5

9

22

23

0

Illustrative example: Path-Finding between two cities

A* Search Algorithm

State of Open in each iteration

(State, f, Parent)

State of Closed in each iteration

(State, f, Parent)

Exercice 1Exercise n° 1: Given the following search tree

o Number the different states of the tree according to their traversal orders using the two

strategies Breadth-First followed by Depth-First.

Exercice 2Exercise n°2: Transform the following graph into a search tree, then apply a breadth-first
search followed by a depth-first search to find the state G from S. In case of conflicts
between nodes, follow alphabetical order.

1. Apply the strategies BFS, DFS and Uniform-Cost

Exercise n° 3
We consider the following map. The objective is to find the optimal path between A and I. We also
give two heuristics h1 and h2:

2. Find the optimal (we minimize) path using the following algorithms:
a) Greedy Best-First Search using h2 as heuristic function
b) A* Search using h1

1) Greedy Best-First Search using h2 2) A* Search using h1

[(A,10,void)]

[(C,8,A),(D,11,A)]

[(B,2,C),(F,2,C),(H,5,C),(D,11,A)]

[(I,0,B),(G,1,B),(F,2,C),(H,5,C)(D,11,A)]

The optimal path: A → C → B → I

[(A,10,void)]

[(C,10,A),(D,15,A)]

[(F,10,C), (H,11,C), (B,13,C),(D,15,A)]

[(H,11,C), (B,13,C), (G,13,F),(D,15,A)]

[(I,12,H)(B,13,C), (G,13,F),(D,15,A)]

Le chemin traversé est : A → C → H → I

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

