
الذكاء الإصطناعي

ARTIFICIAL INTELLIGENCE

3rd Year – Bachelor's Degree in Computer Systems

About the Subject

Coefficient: 3Credit: 5

Evaluation:

- Interrogation/10 pts
- Mini-Project/8 pts,
- Lab attendance/2 pts (Attendance is not mandatory),
- Final Examination/20pts

- Links:
 - Blog: https://ia-dz.blogspot.com
 - E-mail: <u>mistudents14@gmail.com</u>
 - Course: moodle.univ-dbkm.dz

References

- Artificial intelligence: a modern approach. Stuart Russel and Peter Norvig (1151 p)
 - 2010. 3rd PEARSON ed. https://github.com/AzatAI/cs books/blob/master/Artificial Intelligence A Modern Approach.pdf
 - 2022. 4th US ed. https://aima.cs.berkeley.edu/
- Intelligence artificielle pour les développeurs. Concepts et implémentations en C# Virginie Mathivet (512 p)
 - 2014. 3rd ENI ed. http://livre21.com/LIVREF/F1/F001110.pdf

PLAN

- Chapter 1: Introduction
 - Definition. History
 - Al applications
- Chapter 2: Problem-Solving and Search Algorithms
 - Uninformed (Breadth-First Search, Depth-First Search, Uniform-Cost)
 - Informed (Greedy-Best-First Search, A*,)
- Chapter 3: Knowledge Reprsentation and Automatic Reasoning
 - Propositional logic, First-order logic
 - Production rules
 - Semantic networks, Ontologies...
- Chapter 4: Expert Systems
 - Architecture
 - Inference strategies
 - Examples: Dendral, Mycin, Prospector...
- Chapter 5 : Expert Systems Development
 - Development lifecycle
 - Languages and Tools (Prolog, CLIPS, Experta, ES builder,..)

A

Lab plan:

- Intro to Python
- ES with PROLOG
- ES with CLIPS
- ES with EXPERTA

CHAPTER I

INTRODUCTION

- Definitions
- Birth of Al
- History
- Al Applications

AI: DEFINITION

Objective

Designing systems capable of reproducing human behavior (Reasoning and Action activities)

Two approaches

- Thinking and acting like humans (Imitation)
- Thinking and acting correctly (Rationality).

AI: DEFINITION

"Construction of computer programs that engage in tasks that are currently performed more satisfactorily by human beings because they require high-level mental processes such as perceptual learning, memory organization, and critical reasoning."

Marvin Lee Minsky, John McCarthy (1956)

Example: Chess Game

Two methods

1.Building an efficient program:

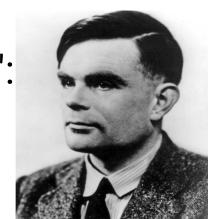
- The machine performs calculations inaccessible to humans.
- Example: Exploring several hundred million positions per second.

2. Understanding how humans play chess:

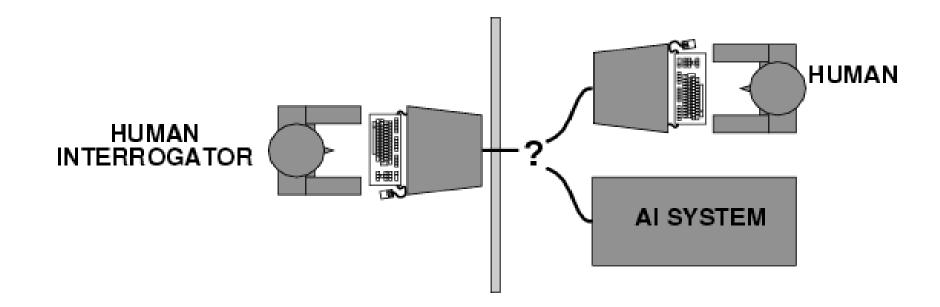
- Interviewing masters.
- Extracting the rules followed by players (occupying the center, dominating a color of squares, etc.).

Machine translation. 1945

- Representation and extraction of knowledge
- Text generation


Robotics (Science fiction), 1950. Isaac Asimov

Three laws of robotics:

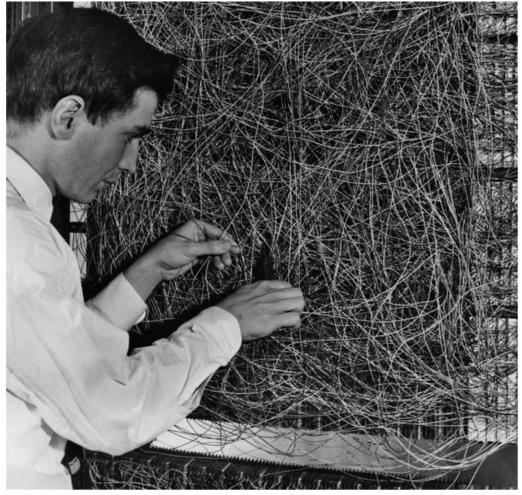

- A robot must not harm a human being
- A robot must obey the orders given by humans (unless it conflicts with the First Law)
- A robot must protect its own existence (as long as it doesn't conflict with the First or Second Laws)

• Alan Turing (1950) "Computing machinery and intelligence": Can machines think?

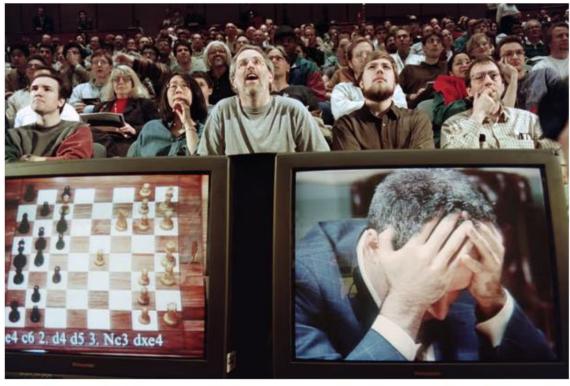
Or: Can machines behave 'intelligently'?

Turing Test (Imitation game)

Birth of Al


- Conference at Dartmouth College (NH, USA) 1956.
- The term «Artificial intelligence» (John McCarthy)

Definition of AI

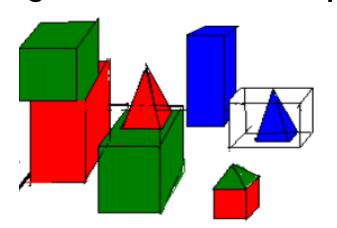

Computer programs that solve problems typically solved by high-level mental processes in humans.

- Perceptron (Rosenblatt, 1958)
 - First neural network

Frank Rosenblatt with his Mark-1 single-layer perceptron

- Chess game (Simon, 1958)
 - Intelligent chess program
 - Kasparov wasn't defeated by the Deep Blue machine until 1997!

■ The last game of Garry Kasparov's 1997 rematch against Deep Blue, which he lost. Photograph: Stan Honda/AFP/Getty Images


- Automatic theorem proving
 - First program : LOGIC THEORIST (1956)

- Appearance of Al languages
 - IPL1 (1956), Lisp (1960, McCarthy), Prolog (1971, A. Calmerauer)

- Intelligent dialogue systems
 - ELIZA (J. Weizenbaum at MIT 1965)
 - Dialogue system that imitate a psychotherapist

<u>Demo</u>

- SHRDLU (T. Winograd, 1970)
 - Manipulation of geometric blocks placed on a table

Example of dialogue

SHRDLU in Action (vidéo)

Expert Systems:

- DENDRAL, 1969: Analysis of mass spectrometry results (identifying the chemical constituents of materials)
- MYCIN, 1977: Infectious diseases
- HEARSAY-II, 1980: Speech understanding
- PROSPECTOR, 1983: Geology

Specific techniques in computer science (1980)

- Renaissance of Neural Networks: Architecture inspired by the human brain (Backpropagation 1986).
- Genetic Algorithms: Mimicking natural selection.
- Inductive Logic Programming.
- Bayesian Networks: Probability theory for selecting the most satisfactory hypotheses.

Emergence of the Internet (1990-2000)

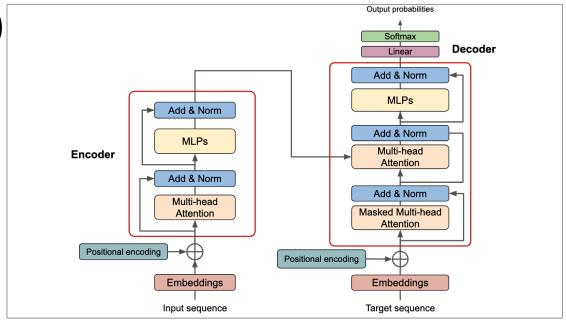
- Information Retrieval (Search Engines)
- Data Mining

Computer Vision (1997)

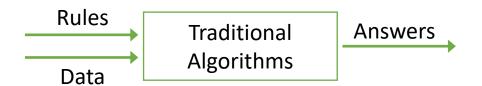
ALVINN System: First autonomous car (Vavlab 5)

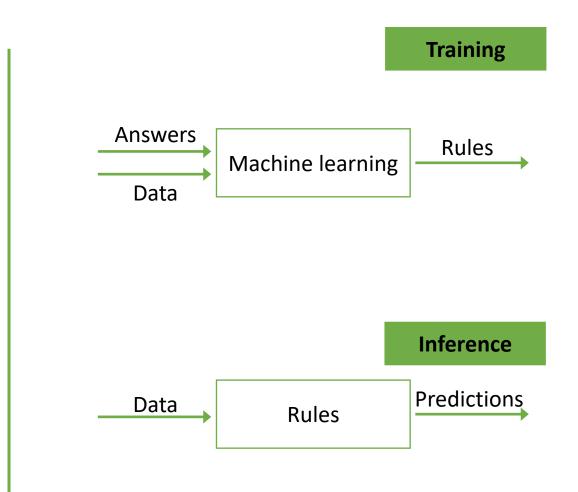
Robotics (1997)

Robot Championship (RoboCup): Soccer-playing robots (Nagoya, Japan)


Automatic satellite control (1999)

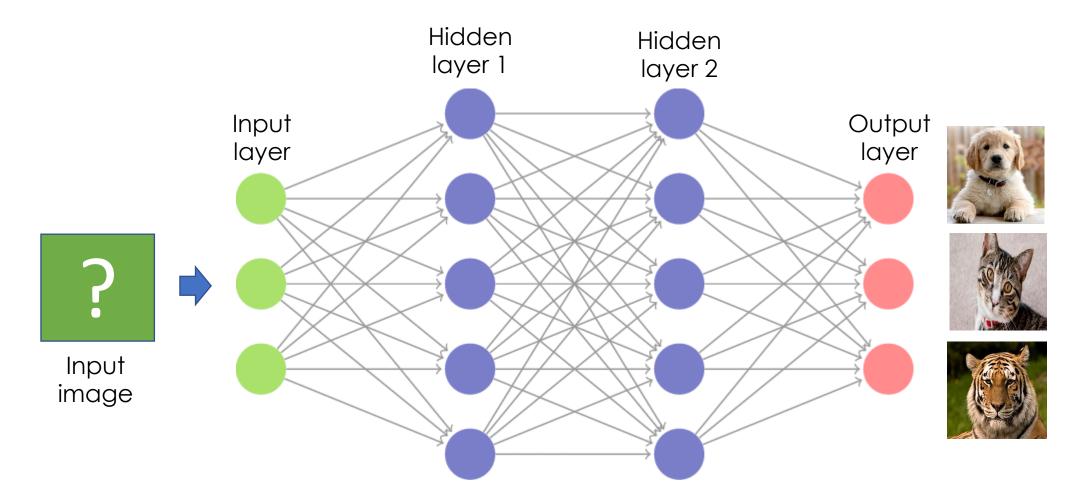
New techniques for knowledge representation and acquisition (2000)


- Ontologies (exp. Unified Medical Language System)
- NLP and lexical databases (Wordnet, OpenCyc)
- E-Learning (Elearning)
- CAPTCHA (Carnegie Mellon University): Differentiating humans from machines


Generative AI models

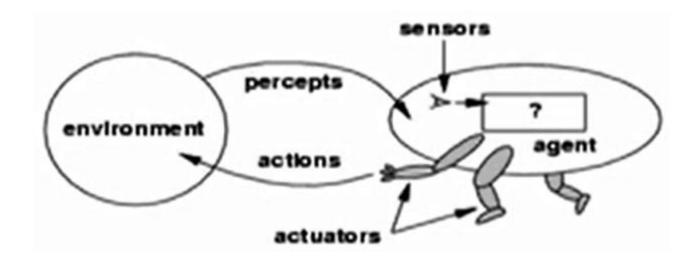
- Birth of Transformer architecture (2017)
- BERT (2019)
- ChatGPT (2022), GPT4 (2023)
- Gemini (2023)
- SORA (2024)

AI: Classical vs Modern



Al Research Fields

- Machine learning & Deep Learning
- Augmented Reality (AR) & Virtual Reality (VR)
- Pattern Recognition
- Artificial life
- Robotics
- Multimedia Indexation
- Datamining
- NLP, NLU and NLG
- Multimodal Al


Deep learning

ROBOTICS

Objective: Creating physical agents that can act in the real world.

- Intelligent interconnection of perception, action, and robot operation.
- A robot must be capable of sensing, moving, reasoning, and communicating in natural language.

ROBOTICS

Examples

Quicktron

ANYmal

Kiva system

