Lagrange formulation of quantum filed

theory

1.1 Recall the formalism of Lagrange

Lagrange’s formalism is an extremely powerful tool for describing the evolution of a physical
problem. Initially approached in the form of the principle of least action, it allows to determine
the behavior of a system as soon as the expression of a physical quantity, the Lagrangian, is
known. The aim of this reminder is to review the fundamental concepts of Lagrangian theory,

first in the context of studying a massive particle, and then in the field theory.

1.1.1 Principle of least action

Given an initial state, a physical system has an infinite number of ways to evolve towards a final

state:
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Figure 1.1: Conversion in the space of generalized coordinates

Therefore, during a real transformation, only one of these changes (evolutions) is actually carried
out. How can we determine this preferred evolution and differentiate it from the others? This
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question is answered by the principle of least action, which can be considered as one of the
postulates of physics.
According to the principle of least action, there exists a quantity called "Action" defined by,

ty .
Slql = t dt L(q;i(t),4i(t),t) , i=1—N (1.1)
1
The value of the system changes during its evolution and must remain minimal throughout the
actual transformation. The action S is defined as the integral of a quantity known as the "La-
grangian," which is a function of the generalized coordinates g and the generalized velocities

q(t) = 21.

1.1.2 Euler-Lagrange equations

Among all the paths that connect the two fixed points (dg(t1) = dq(t2) = 0) with generalized
coordinates Q1 = ¢(t1) and Q> = ¢(t2), the physical trajectories are those that minimize the
action S, such that AS ~ 0.
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Figure 1.2: Transformation in the space of generalized coordinates

In case 6(4(t)) is a infinitesimal function, then,

AS[q] ~ S(q +dq9) — S(q) (1.2)

ty )
S[q] z/t1 dt L(g,49,t) = AS[q] :/tl dt[ L(q+6q,4+64,t) — L(q,4,t)]  (1.3)



Or,
o , oL(q,q,t oL(q,d,t) ..
L(q+ 69,4+ 64,t) = L(q,4,t) + %(M + %&7 (1.4)
Therefore,
t2 . aL I.It aL /‘It . .
AS[q]=/t dt {L(q,q,tHi(gqq )5q+7(gqq )5q— L(q,4,t)
1
_ [, [9L(q,4.t) oL(q,4,t) .. _
_/t1 dt{ S o + 0 ag| ~ 0 (1.5)

If we set that

. d dL(g,4,t) .. oLd
0= —00q) = o0 1= 5% (1.6)
We have also,
d [oL d [oL oL d oL d d [oL d [oL
it 3001 = [5a) o+ a0 = S0 =g 5] - 3] a7
By substituting into equation (1.5), we find,
b [oL d [oL d [oL
st = [ "4 (300 i [5q] i (5] ]
f2 oL d [dL b d [oL
= oy = L)+ i [ge]~o o
where
2 d [dL B2 [dL oL
aty |50 = [ |5 00| = |50 =0 1.9
i ago1] = o [5g] =[50 0
Finally, the Euler-Lagrange equations are expressed as
oL d (oL
o~ (a1) = o

1.1.3 Lagrangian choice

The choice of the Lagrangian is not unique.

— If we replace the Lagrangian L with («L), where « is a real number, then the equations of

motion remain unchanged.



— If we replace the Lagrangian L with (8 + L), where B is a constant, then the equations of

motion remain unchanged.

— If we replace the Lagrangian L with (L + ”é—lt:), where F = F(gq,4,t) is a function, then the

equations of motion remain unchanged.

Exercice 1 :

Show that the variation AS remains invariant under the change of the Lagrangian L to L + ‘;—f.

1.1.4 Hamiltonian formulation

The Hamiltonian H is given by
H(p,q,t) = Pig; — L (1.11)

The generalized momentum is given by

oL
P=-— 1.12
o (1.12)
Exercice 2 :
Show that if the Lagrangian L does not explicitly depend on time t, then %—It{ =0.
Solution 3:
dH 9§ .dp O0Log dLog
i i R i it B 1.1
at ~Por % Tt agar (1.13)

Or, we have
_dL oL doJoL

P=9 & g arag
dH (0 (oL\ o9L\og (oL 9 (9L\\dg _
w-Gr)-s)a (G -a )0 119

1.2 Basic principle of quantum field theory

(1.14)

Therefore,

In a general case, a scalar field is associated with each particle that possesses zero spin. To
characterize N particles, one defines N scalar fields. Consequently, the system comprising these
N fields will be represented by a Lagrangian density of the following form,

L=L (4)1,8;,4)1,4)2, 8P,4>2 .. .4)1\[, a]/,(PN, xy) =L ((Pl', ayqbi, JCH) aveci—=1— N (116)



The motion of these N scalar fields will be described by the following N Euler-Lagrange equations,
oL ( oL )
0| 55—~ ]=0 (1.17)
opi " \0(duei)

It is said that the scalar field ¢(x;) is a system with N degrees of freedom. According to its

definition, the scalar field represents the most straightforward scenario. Its transformation occurs

as follows,

¢(xy) = ¢'(x) (1.18)

— The scalar field (Klein-Gordon field) is used to describe the physics of zero-spin particles

with relativistic speeds c.

— The scalar field can either be real ¢(x;) = ¢*(x;), or complex ¢(x;) # ¢*(xy).

1.2.1 Free scalar field

One possible form of the Lagrangian density that must be chosen to obtain the free Klein-Gordon
equation is given by the following equation.

(9105 — m?) §(x) = 0 (1.19)
Response: The selection is not singular. Our choice is as follows,

1 1
L(¢p,0up, xy) = 5 (a;t¢)2 - imz(l)z (1.20)

Verification: Let us replace in the Euler-Lagrange equations, where ¢; = ¢ = ¢*,

oL oL
— —90 — | =0 1.21
ap <a<ay¢>> (12D

AL, L
Wlth%——m (P, W_ ay(P

By substituting into equation (1.21), we obtain the Klein-Gordon equation

(910 — m?) §(x) = 0 (1.22)



1.2.2 Free complex scalar field

If ¢ = ¢*, what is the general form of the Lagrangian density that must be selected in order to
obtain the following two equations?

(3105 — m?) @(x) = 0, (3,3 —m?) " () = 0 (1.23)

Response: Our choice is the following

L(§, 0, 9", 09", x) = — (3p) (9u9") — m*pp* (1.24)

Verification: Let’s substitute in both Euler-Lagrange equations for ¢; = ¢, ¢*,

oL oL oL oL
Ok o (25 Yo 255 (2% Yo 1.25
ap " <a<ay¢>>) ap " <a<ay¢*>) (129
with opr # A(up*) a4 op " o () G

By substituting into equation (1.25), we obtain the following two equations,
(ayay - mz) $(x,) =0, (ayay - m2> ¢*(x,) =0 (1.26)

1.2.3 Complex scalar field in the presence of an external electromagnetic field

What is the general form of the Lagrangian density that must be chosen to satisfy the following
two equations?

| (0 = i9A4) (3 — igAy) —m?| p(x,) = 0 (1.27)

| (B +igAy) (3 +iqAu) —m?| ¢ (x,) = 0 (1.28)

Response: Our choice is as follows,

L($,0uep, d*, 9™, x4) = — (9 +iqAy) ¢* (04 — igAy) ¢ — mPpep* (1.29)



1.2.4 Remark

— The complex Klein-Gordon field is equivalent to two real scalar fields ¢; and ¢»,. The latter

is given by,
1 . “ 1 .
¢ = ﬁ(fPl +ign), ¢* = \ﬁ(% — i) (1.30)

— The Lagrangian density of the scalar field in the presence of an external electromagnetic
field A,? can be written in the following form,

L(¢, 04, ", 049", x4) = Lo+ L (1.31)

Note that £,? represents the Lagrangian density of the free complex scalar field. The latter
is the sum of the kinetic term ((9,¢*) (9,¢) and the mass term (m?¢p¢*).

Lo=—(3u9") (Oup) — m*pg* (1.32)

While £;? represents the Lagrangian density due to the interaction of the complex scalar
field (¢, ¢*) with the external electromagnetic field A,?.

L1 = —iqAud* (3, — iqAy) ¢ +iqAud (3 +igAy) ¢ (1.33)



