Dirac equation

We will now attempt to develop a relativistic theory for particles with non-zero spin. Initially, we

will consider a scenario in which the electromagnetic field is not taken into account.

5.1 Dirac’s Hamiltonian

To prevent the use of particles with negative energies, as was the case with the Hamiltonian (the
total energy) from which the Klein-Gordon equation for a free particle was derived, Paul Dirac

suggested in 1928 that the general form of the Hamiltonian be expressed as follows:

3
Hpirae = 7.7c + ﬁmc2 = Z Ki.pic + /ch2 = w;.pic + ,Bmcz (5.1)
i=1

where the coefficients § and «; are constants that do not commute.

- We are seeking the values of these two constants.

2

By calculating the square of the Dirac Hamiltonian H one arrives at the following expression

Dirac’
H? = (txi.pic +pB mc2> <(x]-.p]~c +B mc2> = ?Zcz + m?ct (5.2)
H? = p,-p]-(xiucjcz + ﬁzmc2c4 + mc3pi (,Boc]- + ocj,B) = 7202 + m?c* (5.3)

- It is observed through comparison that

BP=1—=ppl=1—=p=p" (5.4)
Baj+ a;p =0 (5.5)
pipjein; = p2 (5.6)
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fori =j=1,2,3 we can get:

pipjuin; = piat + p3as + p1pa (a1an + aoay) + pips (a1a3 + azay) + paps (aoas + azay)  (5.7)

pipjein; = P+ s+ 13 (5.8)

For (5.7) to be equal to (5.8), it is necessary that

0 = as=a3=1 (5.9)

a0y + 0oy = &3 + w30 = tons + a3 =0 (5.10)
Therefor, if we suppose that 0412 =1oui=12,3 then
{061', 06]‘} = 251']‘ (5.11)

In this context, { A, B} = AB + BA represents the anti-commutator of the two quantities A and B.

Finally, the dimensionless constants «; and B satisfy the following anti-commutation relations

B> =1 (5.12)
{B,ai} = 0 (5.13)
{Déi, DC]} = 251] (514)
a? =1 (5.15)
(5.16)
Therefor,
W =ai=05=p"=1, 5.17)
{ar, a0t = {ag, a5} = {az, a3} = {B, a1} = {B, a2} = {B, a5} =0, (5.18)

5.2 The characteristics of Dirac matrices

Prior to formulating the Dirac equation that describes particles with non-zero spin, it is essential
to ascertain the order of the matrices present in the expression of the Dirac Hamiltonian. Es-
tablishing the order of the matrices f and a; will facilitate the determination of the number of
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components in the spinor that characterizes the state of such a particle in the relativistic context.

To achieve this:

1. The eigenvalues of matrices are determined. B,a;: 1 =1,2,3.
The eigenvalue equation, pertaining to § (and similarly to the «;), is expressed in the follow-

BX =AX.

A second application of B (or the a;) yields, taking into account (??):

B2X =1pX = 1.X =2 X

ing form.

Therefore, the eigenvalues of the matrices § and a; are either +1 or —1.

2. It is subsequently demonstrated that the traces Tr(f) = Tr(a;) = 0. To achieve this, we will
utilize, on one hand, the anti-commutation of the matrices in question, and on the other

hand, the well-known properties.

Tr(AB) =Tr(BA),
Tr(AA) = A Tr(A). (5.19)

Indeed,

Tr(e;) = Tr(ley) = Tr(B*a;) = Tr[B(Ba;)] = Tr[B(—a; B)]
= —Tr[B(a; )] = —Tr[(w; B)B] = —Tr[w; p]
= —Tr(a;)
= Tr(a;) = 0. (5.20)

A similar demonstration can be conducted to illustrate that Tr(g) = 0.

3. We will utilize the property that Hermitian matrices M are diagonalizable, meaning there
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exists an invertible matrix S such that.

Ay .. 0 .. 0
SMSt=Mp=| 0 .. A, .. 0 |, (5.21)
0 .. 0 .. A,

where the A; represent the eigenvalues of M. Additionally, the equality of the traces of the

two matrices M and Mp is also utilized. Indeed,
Tr(M) = Tr[S "' (MpS)] = Tr[(MpS)S~'] = Tr(Mp) (5.22)

Since the matrices B and «; are Hermitian, it is possible to apply the aforementioned prop-
erties, which can be expressed in the context of f and «; as follows

Tr(B) = Tr(a;) =0 = Tr(Bp) = Tr[(a;)p] =0
= i/\i =0
i—1
= 1+1-1+.—-1+1)=0.

In order to achieve a sum of zero, it is necessary for the +1 and -1 values to completely offset
each other. This condition is met only when the dimensions of the matrices fp, («;)p, or
alternatively, f and «;, are even, specifically when n = 2p.

For n = 2, A basis for the complex matrices M;, consists of the set of Pauli matrices, along
with the identity matrix {01, 07,03,1}. In this scenario, there is no solution, as equating the
a; with the 0; necessitates that § = 1. However,  has a trace that differs from 1 (Tr(1) = 2),
which is contradictory.

for n = 4, Solutions do exist. They can be expressed in standard representation in the

e(37) L oe(rs) e

where 1 represents the identity matrix of size (2 x 2) and 7 = a o+ e_z> oy + e_g,> 03. The

following form.
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three Pauli matrices are defined as follows

0'1:<(1)(1)> , 0'2:((;;)1> , 0'3:<(1)_01>. (524)

In conclusion, it can be stated that the matrices f and «; present in the Dirac Hamiltonian
are of order 4 x 4. Consequently, the wave function that characterizes the state of a particle
with non-zero spin is a four-component spinor. This spinor is capable of describing both
the particle and its non-zero spin antiparticle. In standard representation, it is customary to

employ the following condensed notation.

P = ( 4 ) (5.25)
X

In this context, ¢ and x represent two-component spinors, which correspond to the particle

and its antiparticle, respectively.

5.3 Standard representation

The representation of Dirac matrices in the standard form is provided by

o = (.‘D _i"") (5.26)

ic,. O

I O
o (0 —11) (5.27)

where 0; represents the Pauli matrices (which are 2 x 2 matrices), defined as follows.

and

a=(13) ==(03) a=(; %) 529

1
I= 0 — matrice unitaire, 0O = 00 (5.29)
01 00
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5.4 Free Dirac equation

In the following discussion, we will attempt to derive the Dirac equation from the Schrodinger

evolution equation,

9 i
lha_lf = HShrdinger’ybr avec HShrodinger = _%§2 (5.30)

The Dirac’s Hamiltonian is given by,

Hpirac = &j.piC + ﬁ mc? (5.31)
and .
T = —ihV = —ihd = —iho, (5.32)
We have also,
0 —jizw'g——cf) (5.33)
YT ot ot ° '

By substituting into (5.30), one obtains.

ih%ltp = <(xi.pic + /3ch> Y= —chosp = (—ihzxi dic+ ,Bmc2> P (5.34)
If we divide both sides of the equation (5.34) by ¢, we obtain
—hogp = (—iha;0;+pmc)y (5.35)

At this point, if we divide both sides of the equation (5.35) by , we obtain

—Bhogp = (—iBha;0; +mc)pavec B= B! (5.36)
(98 + i (=i pa) + %) P =0 (5.37)
(27 +0i7'+ 57 )y =0 (5.39)



with
v = B
7Y = —ipa

Finally, we found,
(8474+8i'yi+m> p=0 avec h=c=1

By employing the representation of the two quadri-vectors.

ay - (81,84)
"o o= ('yi,'y‘*)

where,
(9;,04) - (7’,74) = 047" + 9,7’
This equation can be rewritten as follow,

(Ouy'+m)yp=0

The last equation represents the Dirac equation for a free particle.

If we make the following assumption,

a = ay ’)’IJ
We get,
P1(x)
(§+m)p(x) =0 avec (x)= ()
3(x)
pa(x)
Therefore, the Dirac matrices exhibit the following properties for subscripts u,v =1,2,3,4
(,),H)"‘ = ')/V
() =1

A" = 25#]/

—  spineur de dirac
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(5.39)
(5.40)

(5.41)

(5.42)
(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)
(5.49)
(5.50)



28
5.5 Physical interpretation of the negatives energies

The advantage of utilizing component vectors (spinors) lies in their ability to represent fermions
(such as electrons). Specifically, two components of the Dirac spinor are employed to character-
ize the two spin states (1) of the particle, which possesses an energy of (y/p2c2 + m2c%). The
remaining two components of the spinor are used to describe the spin state of the antiparticle,
which has an energy of (—+/p?c? + m2c?).

The antiparticle simply represents the absence of matter (a void).

For instance, when a particle transitions from a lower energy level to a higher energy level,
the vacancy created by the particle, known as a hole, is regarded as the antiparticle of energy
(E = —/p2c2 + m2c%), commonly referred to as a positron. A positron has the same mass as an
electron but carries a positive charge (+¢).

& Electron & Electron
= Tone interdie i = Ione interdite
HPnemn 3 i HPpalinon Mqr de Direc
(Electrons | [(clectrons
dénergie [ denergie
négative) negative)

Figure 5.1: Diagram of the Dirac Sea.

When an electron returns to its initial state, it emits a photon of energy (hv)
e~ +et — oy (5.51)

This process is referred to as the annihilation phenomenon. It can be observed in particle accel-
erators, where electrons and positrons are accelerated to speeds approaching that of light, subse-

quently colliding to produce new particles (such as pions, mesons, etc.) that possess extremely
short lifetimes.



5.6 Current of free Dirac equation
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We seek the expression of the current associated with the Dirac equation, which satisfies the given

continuity equation.

%4‘?'7}:0:8#]#:0 avec pu=1234

The free Dirac equation is given by,

(F+m)p(x) =0= (37" +m)¢(x) =0

- By calculating the conjugate of the Dirac equation, we arrive at the following result

(@ +m) p(x)]" = 0=+ (x) (3 (") +m) =0

We have
dy = (9;,04) = 9, = (9;,9;)
with
90 =0;, 0; =—04
Therefor,
9, = (0i, —04)
and
7= (V) = (" =" = (v

Therefor,

0 (v") " =097 — o4

Substituting (5.59) in (5.54) we get,

¥ (x) (ani—an4+m) =0

By multiplying both sides of the equation (5.60) by (7*), one arrives at the following result.

W) (05 (") m) =0 x4t

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)



() (977" — dur*rt +mat) =0

("9} =280 = (YL =+t = 0= 19t = =9

Therefor,
g (= =t +atm) =0 —
ot (<3~ m) =0 = g ot (<00 £ m) =0
If we define = ¥ 94, the adjoint equation of the free Dirac equation is transformed

It can be expressed in the following final form,

g (5 -m)=0
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(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

By multiplying equation (5.53) by i and equation (5.67) by 1, we obtain the following results

Y@yt +m)p=0

@(ayv”—m)l/f:o

By calculating the sum of the two equations (5.68) and (5.69), one finds that
Y@ +m) gty (ot —m)p=0=
_ = _
PO 7Y+ MY+ 3y — mpy = 0 —
O (P ) =0=0,J" =0

with
JPrac — gyt p =iyt ¢ avec k=i

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)
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5.6.1 vector current and total charge

Let us compute the expressions for the components of the momentum vector of j4 and j;

h=igy*p=ip 7y Yy =ipTp=p (5.74)
Ti=ipyp=ipTyty'y (5.75)
Or
Y =i, p=7"=+=-irta= (5.76)
Yo =iyt yta = a; =ity (5.77)
Therefor,
Ii=¢+ai¢:?:¢+7¢ (5.78)

Finally, the total charge is given by,
0= /d3xp - i/d3x Pty (5.79)
5.7 Dirac equation in the presence of an external electromagnetic
field

To recover the Dirac equation in the presence of an external electromagnetic field A, the method

of minimal coupling is employed

oy — 9y —iqA, (5.80)
(9+m)p(x) =0= (97" +m)p(x) =0 (5.81)

Substituting (5.80) in (5.81) we get,
(0 —iqAy) Y +m)Pp(x) =0 = (9, v" —igA " +m) p(x) =0 (5.82)

(9 —ig A+m)p(x) =0 (5.83)
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This is the Dirac equation in the presence of an external electromagnetic field A,.

5.8 Lagrangian of the complex spinor field

It is possible to derive the Dirac equation and the adjoint Dirac equation by employing the La-

grangian formulation. Our selection of the Lagrangian is as follows

L, 0u, Y, 0utp, xu) = —¢ (d+m) P (5.84)

Verification: Let us verify that this Lagrangian density enables us to obtain the equations of
motion for the free complex spinor field (¥, ¢). To conduct this verification, it is necessary to
substitute the expression of the Lagrangian density into the Euler-Lagrange equations for a field,
oL oL _
= _ =~ ) =0 =1 = 5.85
s ) =0 v wmv = -
Therefore, each value of ¢; corresponds to a motion equation
oL oL : . - - . .
= — 0y | 52—~ | = 0 — This equation allows for the derivation of the adjoint Dirac equation.
oY (o)

(5.86)

% — 9y (E)'C) = 0 — This equation allows for the derivation of the Dirac equation,

dp ()
(5.87)
1- Let us revisit the Dirac adjoint equation
oL oL
— ==y —my, — =20 5.88
o TR 65
So,
oL oL
9 ”(a@yw)) = @t Emly=0=(Frmly o)
2- Let us revisit the Dirac equation
oL — oL _
= = _ = — ¥
R P R (5.90)



33

Therefor
oL oL S _ _ =
5 () = 0= PP = F (e —m) =0=F(F+m) =0 @9

Therefore, the Lagrangian density of the free complex spinor field is expressed as

L=—F(F+m)p=— (0" +m)p=—Fa, 1"y — mpy (5.92)

5.9 Lagrangian of the complex spinor field in the presence of an

external electromagnetic field.

To derive the two equations of motion for the spinor fields ¢ and ¢ in the presence of an external

electromagnetic field A, the following Lagrangian density is employed

L=—9(F—ig A+m)p=—¢@uy'—igAyy' +m)y (5.93)

That we can write in the following form,

L= —§au 'y — iq Ay i + mpy (5.94)

It is important to recall that the Dirac equations and the adjoint Dirac equation in the presence of

an external electromagnetic field are expressed as follows,

(¢ —iqg A+m)p(x) =0 (5.95)

g (7 +ig Atm) g =0 (5.96)

Verification: Let us verify that this Lagrangian density enables us to derive the equations of
motion for the complex spinor field in the presence of an electromagnetic field. To conduct this
verification, it is necessary to substitute the expression of the Lagrangian density into the Euler-
Lagrange equations for a field,

oL oL —
S (a(am) —0 avec Hi=p=7 (5.97)



Therefore, each value of ¢; corresponds to a motion equation

oL oL
adP Y (o I
ap <a(ay¢)>

oL oL
2 (=) =0
5 ()

1- Let us revisit the adjoint equation

oL . oL
Gp =i ATm)y, gEs =0

So

o ()

2- Let us revisit the Dirac equation

oL . — _ _
ﬁ =14 A,” ,Y‘u 110 - TYZIP, a(a‘ulp) = _110,)/#

34

(5.98)

(5.99)

(5.100)

E—ay <i> =0=—(d-igA+m)p=0=(d—ig A+m)yp =0 (5.101)

(5.102)



