Symmetries and conservation laws

In this section, it will be assumed that the Lagrangian density does not depend explicitly on (x_{μ}) . It will also be assumed that the equations of motion (and hence the action) remain unchanged during an infinitesimal (continuous) transformation defined by,

$$\begin{cases} x_{\mu} \longrightarrow x'_{\mu} = x_{\mu} + \delta x_{\mu} \\ \phi(x_{\mu}) \longrightarrow \phi'(x'_{\mu}) = \phi(x_{\mu}) + \delta \phi(x_{\mu}) \end{cases}$$
(3.1)

with,

 $\begin{cases} x_{\mu} \longrightarrow \text{position spatio-temporelle (coordonn\'ees)} \\ \delta x_{\mu} \longrightarrow \text{variation infinitisimale (deplacement l'espace et dans le temps)} \\ \phi(x_{\mu}) \longrightarrow \text{champ scalaire (variable)} \\ \delta \phi(x_{\mu}) \longrightarrow \text{variation de phase (dûe à une rotation)} \end{cases}$

3.1 Example of transformation

3.1.1 Space-time transformation

A space-time transformation is defined by

$$\begin{cases} x_{\mu} \longrightarrow x'_{\mu} = x_{\mu} + a_{\mu} , & (a_{\mu} = \delta x_{\mu}) \\ \phi(x_{\mu}) \longrightarrow \phi'(x'_{\mu}) = \phi(x_{\mu}) , & (\delta \phi(x_{\mu}) = 0) \end{cases}$$
(3.2)

Where a_{μ} represents the quadri-vector displacement in space-time.

According to the infinitesimal transformation given in equation (3.2),

$$\phi'(x'_{\mu}) = \phi'(x_{\mu} + a_{\mu}) = \phi(x_{\mu}) \tag{3.3}$$

therefore;

$$\phi'(x_{\mu} + a_{\mu}) = \phi(x_{\mu}) \tag{3.4}$$

3.1.2 Global phase transformation $(\phi(x_{\mu}) \neq \phi^*(x_{\mu}))$

This transformation is given by,

$$\begin{cases} x_{\mu} \longrightarrow x'_{\mu} = x_{\mu}, & (\delta x_{\mu} = 0) \\ \phi(x_{\mu}) \longrightarrow \phi'(x'_{\mu}) = \phi(x_{\mu}) + \delta \phi(x_{\mu}) = e^{-iq\theta(x_{\mu})} \phi(x_{\mu}) \end{cases}$$
(3.5)

Where $theta(x_{\mu})$ is a real scalar.

According to the infinitesimal transformation given in equation (3.5),

$$\phi'(x'_{\mu}) = \phi'(x_{\mu}) = \phi(x_{\mu}) + \delta\phi(x_{\mu}) = e^{-iq\theta(x_{\mu})}\phi(x_{\mu})$$
(3.6)

therefor,

$$\phi'^{*}(x_{\mu}) = e^{+iq\theta(x_{\mu})}\phi^{*}(x_{\mu}) \tag{3.7}$$

3.1.3 Local phase transformation $(\phi(x_{\mu}) = \phi^*(x_{\mu}))$

This transformation is given by,

$$\begin{cases} x_{\mu} \longrightarrow x'_{\mu} = x_{\mu} , & (\delta x_{\mu} = 0) \\ \phi(x_{\mu}) \longrightarrow \phi'(x'_{\mu}) = \phi(x_{\mu}) + \delta \phi(x_{\mu}) = e^{-iq\theta(x_{\mu})} \phi(x_{\mu}) \end{cases}$$
(3.8)

Where $theta(x_{\mu})$ is a real scalar.

According to the infinitesimal transformation given in equation (3.8),

$$\phi'(x_u') = \phi'(x_u) = \phi(x_u) + \delta\phi(x_u) = e^{-iq\theta(x_u)}\phi(x_u)$$
(3.9)

therefor,

$$\phi'^{*}(x_{\mu}) = e^{+iq\theta(x_{\mu})}\phi(x_{\mu}) \tag{3.10}$$

3.2 Noether's theorem

3.2.1 Statement

For any continuous transformation of the action S, there is a current J_{μ} satisfying the equation

$$\partial_{\mu}J_{\mu} = 0 \tag{3.11}$$

This implies that there is a self-preserving charge, defined by

$$Q = \int \rho \, d^3x \tag{3.12}$$

3.2.2 Demonstration

The equations of motion are said to be invariant if the action *S* is stationary.

$$\delta S = S' - S \simeq 0 \tag{3.13}$$

We have

$$S = \int d^4x \, \mathcal{L}(\phi, \partial_\mu \phi) \Rightarrow S' = \int d^4x' \, \mathcal{L}(\phi', \partial'_\mu \phi') \tag{3.14}$$

Given $\mathcal{L} = \mathcal{L}(\phi, \partial_{\mu}\phi)$ (where the Lagrangian density does not have explicit dependence on x_{μ}). Let us consider infinitesimal transformations of the form,

$$\begin{cases} x_{\mu} \longrightarrow x'_{\mu} = x_{\mu} + \delta x_{\mu} \\ \phi(x_{\mu}) \longrightarrow \phi'(x'_{\mu}) = \phi(x_{\mu}) + \delta \phi(x_{\mu}) \end{cases}$$
(3.15)

where

$$\delta\phi(x) = \phi'(x') - \phi(x) \tag{3.16}$$

The symbol $\delta \phi(x_{\mu})$ represents the variation of the field due to both the transformation of the field (variable) and the transformation of the coordinates (x_{μ}) .

Thus, the change at a specific point in 4-dimensional space is determined by

$$\delta_0 \phi(x) = \phi'(x) - \phi(x)$$
, pour $x' = x$ (3.17)

The relationship between the spacetime derivatives is expressed by

$$d^{4}x' = [1 + \partial_{\mu}(\delta x_{\mu})]d^{4}x \tag{3.18}$$

Let's now examine the relationship between the field variation at two different points $\delta \phi$ and the field variation at a fixed point $\delta_0 \phi$.

The variation of the field at two different points is given by

$$\delta\phi(x) = \phi'(x') - \phi(x) = \phi'(x') - \phi'(x) + \phi'(x) - \phi(x) \tag{3.19}$$

$$\delta\phi(x) = \phi'(x) + (\partial_{\nu}\phi)\delta x_{\nu} - \phi'(x) + \delta_{o}\phi(x)$$
(3.20)

with

$$\phi'(x') = \phi'(x_{\mu} + \delta x_{\mu}) = \phi'(x_{\mu}) + (\partial_{\nu}\phi)\delta x_{\nu} = \phi'(x) + (\partial_{\nu}\phi)\delta x_{\nu}$$
(3.21)

Therefor,

$$\delta\phi(x) = \delta_0\phi(x) + (\partial_\nu\phi)\delta x_\nu \tag{3.22}$$

Let us calculate the term $\partial_{\mu}' \phi'$

We have

$$\partial'_{\mu}\phi'(x') = \partial'_{\mu}(\phi + \delta\phi) = \frac{\partial}{\partial x'_{\mu}}(\phi + \delta\phi)$$
 (3.23)

$$= \frac{\partial}{\partial x_{\nu}} \frac{\partial x_{\nu}}{\partial x'_{\mu}} (\phi + \delta \phi) = \frac{\partial}{\partial x_{\nu}} (\phi + \delta \phi) \frac{\partial x_{\nu}}{\partial x'_{\mu}}$$
(3.24)

We have also

$$x_{\nu}^{'} = x_{\nu} + \delta x_{\nu} \Rightarrow x_{\nu} = x_{\nu}^{'} - \delta x_{\nu} \tag{3.25}$$

Therefor

$$\frac{\partial x_{\nu}}{\partial x'_{\mu}} = \frac{\partial x'_{\nu}}{\partial x'_{\mu}} + \frac{\partial}{\partial x'_{\mu}} (\delta x_{\nu}) \tag{3.26}$$

Finally, we get

$$\frac{\partial x_{\nu}}{\partial x_{\nu}'} = \delta_{\mu\nu} - \partial_{\mu}(\delta x_{\nu}) \tag{3.27}$$

By substituting the equation (??) into equation (3.23), we obtain

$$\partial'_{\mu}\phi'(x') = \frac{\partial}{\partial x_{\nu}}(\phi + \delta\phi)\frac{\partial x_{\nu}}{\partial x'_{\mu}}$$
(3.28)

$$= \left(\frac{\partial \phi}{\partial x_{\nu}} + \frac{\partial}{\partial x_{\nu}} (\delta \phi)\right) (\delta_{\mu\nu} - \partial_{\mu} (\delta x_{\nu})) \tag{3.29}$$

$$= (\partial_{\nu}\phi + \partial_{\nu}(\delta\phi)) (\delta_{\mu\nu} - \partial_{\mu}(\delta x_{\nu}))$$
(3.30)

$$= (\partial_{\nu}\phi)\delta_{\mu\nu} - (\partial_{\nu}\phi)\partial_{\mu}(\delta x_{\nu}) + \partial_{\nu}(\delta\phi)\delta_{\mu\nu} - \partial_{\nu}(\delta\phi)\partial_{\mu}(\delta x_{\nu})$$
(3.31)

$$\partial'_{\mu}\phi'(x') = (\partial_{\mu}\phi) - (\partial_{\nu}\phi)\partial_{\mu}(\delta x_{\nu}) + \partial_{\mu}(\delta\phi) \tag{3.32}$$

The term $\partial_{\nu}(\delta\phi)\partial_{\mu}(\delta x_{\nu})$ is neglected, as it is a higher-order term.

The Lagrangian density does not explicitly depend on x_{μ} , which implies that $\mathcal{L} = \mathcal{L}(\phi, \partial_{\mu}\phi)$. Therefor,

$$\mathcal{L}(\phi', \partial'_{\mu}\phi') = \mathcal{L}(\phi + \delta\phi, (\partial_{\mu}\phi) - (\partial_{\nu}\phi)\partial_{\mu}(\delta x_{\nu}) + \partial_{\mu}(\delta\phi))$$
(3.33)

$$= \mathcal{L}(\phi, \partial_{\mu}\phi) + \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} [\partial_{\mu}(\delta \phi) - (\partial_{\nu}\phi)\partial_{\mu}(\delta x_{\nu})]$$
(3.34)

we get

$$\mathcal{L}(\phi', \partial'_{\mu}\phi') = \mathcal{L}(\phi, \partial_{\mu}\phi) + \frac{\partial \mathcal{L}}{\partial \phi}\delta\phi + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\partial_{\mu}(\delta\phi) - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}(\partial_{\nu}\phi)\partial_{\mu}(\delta x_{\nu})$$
(3.35)

By substituting the equation (3.18) into the equation (3.13), one arrives at the following result

$$\delta S = \int d^4 x' \, \mathcal{L}(\phi', \partial'_{\mu} \phi') - \int d^4 x \, \mathcal{L}(\phi, \partial_{\mu} \phi) \simeq 0 \tag{3.36}$$

$$= \int [1 + \partial_{\mu}(\delta x_{\mu})] d^{4}x \, \mathcal{L}(\phi', \partial'_{\mu}\phi') - \int d^{4}x \, \mathcal{L}(\phi, \partial_{\mu}\phi) \simeq 0 \tag{3.37}$$

$$\delta S = \int [\mathcal{L}(\phi', \partial'_{\mu}\phi') - \mathcal{L}(\phi, \partial_{\mu}\phi) + \partial_{\mu}(\delta x_{\mu})\mathcal{L}]d^{4}x \simeq 0$$
(3.38)

Let us calculate the following term: $\mathcal{L}(\phi', \partial'_{\mu}\phi') - \mathcal{L}(\phi, \partial_{\mu}\phi)$

$$\mathcal{L}(\phi^{'},\partial_{\mu}^{'}\phi^{'}) - \mathcal{L}(\phi,\partial_{\mu}\phi) = \mathcal{L}(\phi,\partial_{\mu}\phi) + \frac{\partial \mathcal{L}}{\partial \phi}\delta\phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)}\partial_{\mu}(\delta\phi) - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)}(\partial_{\nu}\phi)\partial_{\mu}(\delta x_{\nu}) - \mathcal{L}(\phi,\partial_{\mu}\phi)$$

$$\mathcal{L}(\phi', \partial'_{\mu}\phi') - \mathcal{L}(\phi, \partial_{\mu}\phi) = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \partial_{\mu}(\delta \phi) - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} (\partial_{\nu}\phi) \partial_{\mu}(\delta x_{\nu})$$
(3.39)

According to the Euler-Lagrange equations,

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) = 0$$

then

$$\frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \tag{3.40}$$

We have also

$$\partial_{\mu}\left(rac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\delta\phi
ight)=\partial_{\mu}\left(rac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}
ight)\delta\phi+rac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\partial_{\mu}(\delta\phi)$$

Therefor

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\mu} (\delta \phi) = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \delta \phi \tag{3.41}$$

By replacing equations (3.40) and (3.41) in equation (3.39), we obtain

$$\mathcal{L}(\phi^{'},\partial_{\mu}^{'}\phi^{'}) - \mathcal{L}(\phi,\partial_{\mu}\phi) = \partial_{\mu}\left(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\right)\delta\phi + \partial_{\mu}\left(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\delta\phi\right) - \partial_{\mu}\left(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\right)\delta\phi - \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}(\partial_{\nu}\phi)\partial_{\mu}(\delta x_{\nu})$$

$$\mathcal{L}(\phi', \partial'_{\mu}\phi') - \mathcal{L}(\phi, \partial_{\mu}\phi) = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \delta \phi \right) - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} (\partial_{\nu}\phi) \partial_{\mu} (\delta x_{\nu})$$
(3.42)

We have

$$\delta \phi = \delta_o \phi + (\partial_\nu \phi) \delta x_\nu$$

Then

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} (\delta_{o} \phi + (\partial_{\nu} \phi) (\delta x_{\nu})) \right)$$

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta_{o} \phi \right) + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} (\partial_{\nu} \phi) (\delta x_{\nu}) \right)$$
(3.43)

Let us calculate the term $\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} (\partial_{\nu} \phi) (\delta x_{\nu}) \right)$:

$$\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}(\partial_{\nu}\phi)(\delta x_{\nu})\right) = \partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\right)(\partial_{\nu}\phi)(\delta x_{\nu}) + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\partial_{\mu}\left((\partial_{\nu}\phi)\right)(\delta x_{\nu}) + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}(\partial_{\nu}\phi)\partial_{\mu}\left(\delta x_{\nu}\right)$$

By neglecting higher order terms, one can find

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} (\partial_{\nu} \phi) (\delta x_{\nu}) \right) = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) (\partial_{\nu} \phi) (\delta x_{\nu}) + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} (\partial_{\nu} \phi) \partial_{\mu} (\delta x_{\nu}) \tag{3.44}$$

Therefor

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta_{o} \phi \right) + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) (\partial_{\nu} \phi) (\delta x_{\nu}) + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} (\partial_{\nu} \phi) \partial_{\mu} (\delta x_{\nu})$$
(3.45)

By inserting equation (3.45) into equation (3.42), we get

$$\mathcal{L}(\phi',\partial'_{\mu}\phi') - \mathcal{L}(\phi,\partial_{\mu}\phi) = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \delta \phi \right) - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} (\partial_{\nu}\phi) \partial_{\mu} (\delta x_{\nu})$$

$$= \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \delta_{o}\phi \right) + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \right) (\partial_{\nu}\phi) (\delta x_{\nu}) + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} (\partial_{\nu}\phi) \partial_{\mu} (\delta x_{\nu}) - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} (\partial_{\nu}\phi) \partial_{\mu} (\delta x_{\nu})$$
o,

So,

$$\mathcal{L}(\phi^{'},\partial_{\mu}^{'}\phi^{'})-\mathcal{L}(\phi,\partial_{\mu}\phi)=\partial_{\mu}\left(rac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\delta_{o}\phi
ight)+\partial_{\mu}\left(rac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}
ight)(\partial_{
u}\phi)(\delta x_{
u})$$

Calculating the term $\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) (\partial_{\nu} \phi) (\delta x_{\nu})$

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) (\partial_{\nu} \phi) (\delta x_{\nu}) = \frac{\partial \mathcal{L}}{\partial \phi} (\partial_{\nu} \phi) (\delta x_{\nu}) = \frac{\partial \mathcal{L}}{\partial x_{\mu}} \frac{\partial x_{\mu}}{\partial \phi} \frac{\partial \phi}{\partial x_{\nu}} \delta x_{\nu}$$
$$= \frac{\partial \mathcal{L}}{\partial x_{\mu}} \frac{\partial x_{\mu}}{\partial \partial x_{\nu}} \delta x_{\nu} = \frac{\partial \mathcal{L}}{\partial x_{\mu}} \delta_{\mu\nu} \delta x_{\nu} = \partial_{\mu} \mathcal{L} \delta x_{\mu}$$

Finally, we get

$$\mathcal{L}(\phi', \partial'_{\mu}\phi') - \mathcal{L}(\phi, \partial_{\mu}\phi) = \partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\delta_{o}\phi\right) + \partial_{\mu}\mathcal{L}\ \delta x_{\mu} \tag{3.46}$$

The variation of the action in the equation (3.38) becomes

$$\delta S = \int \left[\partial_{\mu} \left(rac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta_{o} \phi
ight) + \partial_{\mu} \mathcal{L} \, \, \delta x_{\mu} + \partial_{\mu} (\delta x_{\mu}) \mathcal{L}
ight] d^{4} x \simeq 0$$

We have

$$\partial_{\mu}\mathcal{L} \, \delta x_{\mu} + \partial_{\mu}(\delta x_{\mu})\mathcal{L} = \partial_{\mu}(\mathcal{L} \, \delta x_{\mu})$$

Then,

$$\delta S = \int \left[\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta_{o} \phi \right) + \partial_{\mu} (\mathcal{L} \, \delta x_{\mu}) \right] d^{4} x \simeq 0$$

$$\delta S = \int \partial_{\mu} \left[\left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta_{o} \phi \right) + \mathcal{L} \, \delta x_{\mu} \right] d^{4} x \simeq 0$$

$$\Rightarrow \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta_{o} \phi + \mathcal{L} \, \delta x_{\mu} \right] = 0$$

The final equation can be expressed in the following form

$$\partial_{\mu} J_{\mu} = 0$$

with

$$J_{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta_{o} \phi + \mathcal{L} \, \delta x_{\mu} \longrightarrow \text{Courant de Noether}$$

3.3 Energy-Momentum Tensor of the scalar field

Since the Lagrangian density \mathcal{L} does not explicitly depend on the four-position vector x_{μ} , its derivative with respect to x_{μ} is as follows

$$\partial_{\mu}\mathcal{L} = \partial_{\mu}\mathcal{L}(\phi, \partial_{\mu}\phi) \quad \text{où} \quad \partial_{\mu} = \frac{\partial}{\partial x_{\mu}}$$
 (3.47)

Therefor

$$\partial_{\mu}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial x_{\mu}} \tag{3.48}$$

We have,

$$\partial_{\mu}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial x_{\mu}} = \frac{\partial \mathcal{L}}{\partial \phi} \frac{\partial \phi}{\partial x_{\mu}} + \frac{\partial \mathcal{L}}{\partial (\partial_{\nu}\phi)} \frac{\partial (\partial_{\nu}\phi)}{\partial x_{\mu}}$$
(3.49)

According to the Euler-Lagrange equation, we have

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \phi)} \right) = 0 \quad \Rightarrow \frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \phi)} \right) \quad \text{pour} \quad \mu = \nu$$
 (3.50)

Therefor,

$$\partial_{\mu}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial x_{\mu}} = \partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \phi)} \right) \partial_{\mu} \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \phi)} \partial_{\mu} \left(\partial_{\nu} \phi \right)$$
(3.51)

By setting,

$$\partial_{\mu} \left(\partial_{\nu} \phi \right) = \partial_{\nu} \left(\partial_{\mu} \phi \right) \tag{3.52}$$

we found that,

$$\partial_{\mu}\mathcal{L} = \partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\nu}\phi)} \right) \partial_{\mu}\phi + \frac{\partial \mathcal{L}}{\partial(\partial_{\nu}\phi)} \partial_{\nu} \left(\partial_{\mu}\phi \right) = \partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\nu}\phi)} \partial_{\mu}\phi \right) \tag{3.53}$$

The expression $\partial_{\mu}\mathcal{L}$ can also be represented in the following way:

$$\partial_{\mu}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial x_{\mu}} = \frac{\partial \mathcal{L}}{\partial x_{\nu}} \frac{\partial x_{\nu}}{\partial x_{\mu}} = (\partial_{\nu}\mathcal{L}) \,\delta_{\mu\nu} = \partial_{\nu} \left(\mathcal{L} \delta_{\mu\nu} \right) \tag{3.54}$$

Comparing equations (3.53) and (3.54), we can see that

$$\partial_{\mu}\mathcal{L} = \partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \phi)} \partial_{\mu} \phi \right) = \partial_{\nu} \left(\mathcal{L} \delta_{\mu\nu} \right) \tag{3.55}$$

Therefor,

$$\partial_{\nu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\nu} \phi)} \partial_{\mu} \phi - \mathcal{L} \delta_{\mu\nu} \right) = 0 \tag{3.56}$$

Now, if we replace ν by μ

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\nu} \phi - \mathcal{L} \delta_{\mu\nu} \right) = 0 \tag{3.57}$$

The letter can be rewritten in the following form,

$$\partial_{\mu\nu}T_{\mu\nu} = 0 \text{ avec } T_{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\partial_{\nu}\phi - \mathcal{L}\delta_{\mu\nu}$$
 (3.58)

The tensor $T_{\mu\nu}$ denotes the energy-momentum tensor of the scalar field.